Statistical Machine Learning
 Lecture 02: Linear Algebra Refresher

Kristian Kersting

TU Darmstadt
Summer Term 2020

Today's Objectives

- Make you remember Linear Algebra!

■ I know this is mostly easy but some of you may have forgotten all of it...

- Covered Topics:
- Vectors, Matrices
- Linear Transformations

Outline

1. Vectors

2. Matrices

3. Operations and Linear Transformations
4. Wrap-Up

Outline

1. Vectors

2. Matrices

3. Operations and Linear Transformations

4. Wrap-Up

Vectors

$$
\begin{aligned}
& \text { Weight } \\
& \text { Joe }=\left[\begin{array}{c}
37 \\
72 \\
175
\end{array}\right] \text {, Mary }=\left[\begin{array}{l}
10 \\
30 \\
61
\end{array}\right], \text { Carol }=\left[\begin{array}{c}
25 \\
65 \\
121
\end{array}\right], \text { Brad }=\left[\begin{array}{c}
66 \\
67 \\
155
\end{array}\right], \text { Joe }=\left[\begin{array}{c}
37 \\
72 \\
175 \\
8 \\
1946
\end{array}\right]
\end{aligned}
$$

What can you do with vectors?

- Multiplication by a scalar cv

$$
\begin{gathered}
2\left[\begin{array}{l}
2 \\
1
\end{array}\right]=\left[\begin{array}{l}
4 \\
2
\end{array}\right] \\
5\left[\begin{array}{c}
-3 \\
4 \\
1
\end{array}\right]=\left[\begin{array}{c}
-15 \\
20 \\
5
\end{array}\right] \\
c \mathbf{v}=c\left[\begin{array}{c}
v_{1} \\
\vdots \\
v_{n}
\end{array}\right]=\left[\begin{array}{c}
c v_{1} \\
\vdots \\
c v_{n}
\end{array}\right]
\end{gathered}
$$

What can you do with vectors?

\square Addition of vectors $\mathbf{v}_{1}+\mathbf{v}_{2}$

$$
\begin{gathered}
{\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right]+\left[\begin{array}{l}
2 \\
1 \\
3
\end{array}\right]=\left[\begin{array}{l}
3 \\
3 \\
4
\end{array}\right]} \\
{\left[\begin{array}{l}
2 \\
1
\end{array}\right]+\left[\begin{array}{l}
0 \\
1
\end{array}\right]+\left[\begin{array}{c}
3 \\
-3
\end{array}\right]=\left[\begin{array}{c}
5 \\
-1
\end{array}\right]} \\
{\left[\begin{array}{c}
a_{1} \\
\vdots \\
a_{n}
\end{array}\right]+\left[\begin{array}{c}
b_{1} \\
\vdots \\
b_{n}
\end{array}\right]=\left[\begin{array}{c}
a_{1}+b_{1} \\
\vdots \\
a_{n}+b_{n}
\end{array}\right]}
\end{gathered}
$$

Linear Combination of Vectors

- By positive recombination we can obtain:
$\square \mathbf{u}=c_{1} \mathbf{v}_{\mathbf{1}}+c_{2} \mathbf{v}_{\mathbf{2}}+\ldots+c_{n} \mathbf{v}_{\mathbf{n}}$
- Examples:

$$
\begin{aligned}
& {\left[\begin{array}{l}
1 \\
1
\end{array}\right] \text { and }\left[\begin{array}{l}
2 \\
2
\end{array}\right]} \\
& {\left[\begin{array}{l}
1 \\
1
\end{array}\right] \text { and }\left[\begin{array}{l}
2 \\
1
\end{array}\right]} \\
& {\left[\begin{array}{l}
1 \\
1
\end{array}\right],\left[\begin{array}{l}
2 \\
1
\end{array}\right] \text { and }\left[\begin{array}{c}
-1 \\
3
\end{array}\right]} \\
& {\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right],\left[\begin{array}{l}
3 \\
2 \\
0
\end{array}\right] \text { and }\left[\begin{array}{c}
9 \\
10 \\
0
\end{array}\right]}
\end{aligned}
$$

Inner Product and Length of a Vector

- Inner Product
$\mathbf{v}=\left[\begin{array}{c}3 \\ -1 \\ 2\end{array}\right], \mathbf{w}=\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]$
- $\mathbf{v} \cdot \mathbf{w}=\mathbf{v}^{\boldsymbol{\top}} \mathbf{w}=(3 \cdot 1)+(-1 \cdot 2)+(2 \cdot 1)=3$
- Length of a vector (Frobenius norm)

■ $\|\mathbf{v}\|=(\mathbf{v} \cdot \mathbf{v})^{1 / 2}$

- $\|\mathbf{c} \mathbf{v}\|=|c|\|\mathbf{v}\|$
- $\left\|\mathbf{v}_{1}+\mathbf{v}_{2}\right\| \leq\left\|\mathbf{v}_{1}\right\|+\left\|\mathbf{v}_{2}\right\|$ (triangle inequality)

Angles between Vectors

- The angle between vectors is defined by
$\square \cos \theta=\frac{\mathbf{v} \cdot \mathbf{w}}{\|\mathbf{v}\|\|\mathbf{w}\|}=\frac{\sum_{i=1}^{n} v_{i} w_{i}}{\left(\sum_{i=1}^{n} v_{i}^{2}\right)^{1 / 2}\left(\sum_{i=1}^{n} w_{i}^{2}\right)^{1 / 2}}$
- Example:
\square Find the angle between vectors $\mathbf{v}_{1}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$ and $\mathbf{v}_{2}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$
$\square \mathbf{v}_{1} \cdot \mathbf{v}_{2}=1,\left\|\mathbf{v}_{1}\right\|=1,\left\|\mathbf{v}_{2}\right\|=\sqrt{2}$
$\square \cos \theta=\frac{1}{1 \sqrt{2}}=0.707, \theta=\pi / 4$

Projections of Vectors: Basic Idea

- What is a projection of \mathbf{v} onto \mathbf{w} ?
- Formally

$$
\begin{aligned}
x & =\|\mathbf{v}\| \cos \theta \\
& =\|\mathbf{v}\| \frac{\mathbf{v} \cdot \mathbf{w}}{\|\mathbf{v}\|\|\mathbf{w}\|} \\
& =\frac{\mathbf{v} \cdot \mathbf{w}}{\|\mathbf{w}\|}
\end{aligned}
$$

■ Note that x is a not a vector!

Vector Transpose, Inner and Outer Products

- Vector Transpose

$$
\mathbf{v}=\left[\begin{array}{l}
3 \\
1 \\
2
\end{array}\right], \mathbf{v}^{\boldsymbol{\top}}=\left[\begin{array}{lll}
3 & 1 & 2
\end{array}\right]
$$

- Inner Product

$$
\mathbf{v}^{\top} \mathbf{u}=\left[\begin{array}{lll}
3 & 1 & 2
\end{array}\right]\left[\begin{array}{l}
0 \\
4 \\
1
\end{array}\right]=[6]
$$

■ Outer Product

- $\mathbf{w v}^{\boldsymbol{\top}}=\left[\begin{array}{l}1 \\ 4 \\ 0\end{array}\right]\left[\begin{array}{lll}3 & 1 & 2\end{array}\right]=\left[\begin{array}{ccc}3 & 1 & 2 \\ 12 & 4 & 8 \\ 0 & 0 & 0\end{array}\right]$

Outline

1. Vectors

2. Matrices

3. Operations and Linear Transformations

4. Wrap-Up

Matrices

Examples

- $\mathbf{M}=\left[\begin{array}{lll}3 & 4 & 5 \\ 1 & 0 & 1\end{array}\right], 2 \times 3$ matrix
- $\mathbf{N}=\left[\begin{array}{lll}3 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 0 & 1\end{array}\right], 3 \times 3$ matrix
- $\mathbf{P}=\left[\begin{array}{cc}10 & -1 \\ -1 & 27\end{array}\right], 2 \times 2$ matrix

What can you do with Matrices?

- Multiplication by Scalars

$$
\mathbf{3} \cdot \mathbf{M}=3\left[\begin{array}{lll}
3 & 4 & 5 \\
1 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
9 & 12 & 15 \\
3 & 0 & 3
\end{array}\right]
$$

- Addition of Matrices

$$
\mathbf{M}+\mathbf{N}=\left[\begin{array}{lll}
3 & 4 & 5 \\
1 & 0 & 1
\end{array}\right]+\left[\begin{array}{ccc}
-1 & 0 & 2 \\
4 & 1 & -1
\end{array}\right]=\left[\begin{array}{lll}
2 & 4 & 7 \\
5 & 1 & 0
\end{array}\right]
$$

- Addition is only defined for matrices with the same dimensions.
- Transpose of a Matrix

$$
\mathbf{M}^{\top}=\left[\begin{array}{lll}
3 & 4 & 5 \\
1 & 0 & 1
\end{array}\right]^{\top}=\left[\begin{array}{ll}
3 & 1 \\
4 & 0 \\
5 & 2
\end{array}\right]
$$

Matrix-Vector multiplication

- Multiplication of a Vector by a Matrix

$$
\mathbf{u}=\mathbf{W} \mathbf{v}=\left[\begin{array}{lll}
3 & 4 & 5 \\
1 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right]=\left[\begin{array}{l}
3 \cdot 1+4 \cdot 0+5 \cdot 2 \\
1 \cdot 1+0 \cdot 0+1 \cdot 2
\end{array}\right]=\left[\begin{array}{c}
13 \\
3
\end{array}\right]
$$

- Think of it as

$$
\left[\begin{array}{ccc}
\mid & & \mid \\
\mathbf{w}_{1} & \ldots & \mathbf{w}_{n} \\
\mid & & \mid
\end{array}\right]\left[\begin{array}{c}
v_{1} \\
\vdots \\
v_{n}
\end{array}\right]=\left[\begin{array}{ccc}
v_{1} \mathbf{w}_{1}+ & \ldots & +v_{n} \mathbf{w}_{n} \\
& \mid &
\end{array}\right]
$$

- Dimensions: $\mathbf{W} \in \mathbb{R}^{\mathrm{M} \times \mathrm{N}}, \mathbf{v} \in \mathbb{R}^{\mathrm{N} \times 1}, \mathbf{u} \in \mathbb{R}^{\mathrm{M} \times 1}$
- Hence
$\mathbf{u}=v_{1} \mathbf{w}_{1}+v_{2} \mathbf{w}_{2}+v_{3} \mathbf{w}_{3}=1\left[\begin{array}{l}3 \\ 1\end{array}\right]+0\left[\begin{array}{l}4 \\ 0\end{array}\right]+2\left[\begin{array}{l}5 \\ 1\end{array}\right]=\left[\begin{array}{c}13 \\ 3\end{array}\right]$

Matrix-Matrix multiplication

■ Multiplication of a Matrix by a Matrix

$$
\begin{gathered}
\mathbf{C}=\mathbf{A B}=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right]\left[\begin{array}{ll}
1 & 2 \\
3 & 4 \\
5 & 6
\end{array}\right]= \\
{\left[\begin{array}{ll}
1 \cdot 1+2 \cdot 3+3 \cdot 5 & 1 \cdot 2+2 \cdot 4+3 \cdot 6 \\
4 \cdot 1+5 \cdot 3+6 \cdot 5 & 4 \cdot 2+5 \cdot 4+6 \cdot 6
\end{array}\right]=\left[\begin{array}{ll}
22 & 28 \\
49 & 64
\end{array}\right]}
\end{gathered}
$$

- Dimensions: $\mathbf{A} \in \mathbb{R}^{\mathrm{M} \times \mathrm{N}}, \mathbf{B} \in \mathbb{R}^{\mathrm{N} \times \mathrm{K}}, \mathbf{C} \in \mathbb{R}^{\mathrm{M} \times \mathrm{K}}$
- Verifying the right dimensions is an important sanity checker when working with matrices

Matrix Inverse

- Definition for square matrices $\mathbf{W} \in \mathbb{R}^{n \times n}$

$$
\mathbf{W}^{-1} \mathbf{W}=\mathbf{W W}^{-1}=\mathbf{I}
$$

$$
\mathbf{W}^{-1}=\frac{1}{\operatorname{det} \mathbf{W}} \mathbf{C}^{\top}
$$

where \mathbf{C} is the cofactor matrix of \mathbf{W}.

- If \mathbf{W}^{-1} exists, we say \mathbf{W} is nonsingular.

Matrix Inverse

- A condition for invertibility is that the determinant has to be different than zero.
- For an intuition consider the following linear transformation matrix

$$
\mathbf{A}=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right], \quad \operatorname{det} \mathbf{A}=0
$$

- Applying this transformation to a vector gives

$$
\mathbf{v}^{\prime}=\mathbf{A} \mathbf{v}=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=v_{1}\left[\begin{array}{l}
1 \\
0
\end{array}\right]+v_{2}\left[\begin{array}{l}
0 \\
0
\end{array}\right]=\left[\begin{array}{c}
v_{1} \\
0
\end{array}\right]=\left[\begin{array}{l}
v_{1}^{\prime} \\
v_{2}^{\prime}
\end{array}\right]
$$

- This transformation removes one dimension from \mathbf{v} and projects it as a point along the first dimension.

Matrix Inverse

- Can we from \mathbf{A} and $\mathbf{v}^{\prime}=\left[\begin{array}{ll}v_{1}^{\prime} & v_{2}^{\prime}\end{array}\right]^{\top}$ recover the initial vector \mathbf{v} ?
- We have the following linear system of equations

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
v_{1}^{\prime} \\
v_{2}^{\prime}
\end{array}\right]=\left[\begin{array}{c}
v_{1} \\
0
\end{array}\right]
$$

- While there is only one solution for v_{1}, there are infinitely many solutions for v_{2}. This means we cannot recover the initial value of v_{2}.

■ On the contrary, a nonsingular matrix, such as the identity matrix, admits one solution.

Matrix Inverse

- Example

$$
\mathbf{W}=\left[\begin{array}{cc}
1 & 1 / 2 \\
-1 & 1
\end{array}\right], \mathbf{W}^{-1}=\left[\begin{array}{cc}
2 / 3 & -1 / 3 \\
2 / 3 & 2 / 3
\end{array}\right]
$$

■ Verify it!

$$
\begin{aligned}
& \mathbf{W W}^{-1}=\left[\begin{array}{cc}
1 & 1 / 2 \\
-1 & 1
\end{array}\right]\left[\begin{array}{cc}
2 / 3 & -1 / 3 \\
2 / 3 & 2 / 3
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
& \mathbf{W}^{-1} \mathbf{W}=\left[\begin{array}{cc}
2 / 3 & -1 / 3 \\
2 / 3 & 2 / 3
\end{array}\right]\left[\begin{array}{cc}
1 & 1 / 2 \\
-1 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
\end{aligned}
$$

Matrix Pseudoinverse

How can we invert a matrix $J \in \mathbb{R}^{n \times m}$ that is not squared?

- Left-Pseudo Inverse $\mathbf{J} \# \mathbf{J}=\underbrace{\left(\mathbf{J}^{\top} \mathbf{J}\right)^{-1} \mathbf{J}^{\top}}_{\text {left multiplied }} \mathbf{J}=\mathbf{I}_{m}$

■ Works if J has full column rank

- Right-Pseudo Inverse JJ\# = J

■ Works if J has full row rank

Outline

1. Vectors

2. Matrices

3. Operations and Linear Transformations

4. Wrap-Up

Change of Basis

- Basis as Unit Vectors

- New Basis (vectors \mathbf{y}_{1} and \mathbf{y}_{2})

- Coordinates of vector \mathbf{v} in the original coordinate system (with unit basis vectors)

$$
\mathbf{v}=c_{1} \mathbf{y}_{1}+\ldots+c_{n} \mathbf{y}_{n}=\mathbf{Y}_{\mathbf{v}^{*}}
$$

- Where \mathbf{v}^{*} holds the coordinates in the new coordinate system.
- To get the coordinates of \mathbf{v}^{*} (in the new basis) we just apply the inverse transformation

Change of Basis - Example

- We have

$$
\mathbf{y}_{1}=\left[\begin{array}{c}
1 \\
-1
\end{array}\right], \mathbf{y}_{2}=\left[\begin{array}{c}
1 / 2 \\
1
\end{array}\right]
$$

- Thus

$$
\begin{gathered}
\mathbf{Y}=\left[\begin{array}{cc}
1 & 1 / 2 \\
-1 & 1
\end{array}\right], \mathbf{Y}^{-1}=\left[\begin{array}{cc}
2 / 3 & -1 / 3 \\
2 / 3 & 2 / 3
\end{array}\right] \\
\mathbf{v}^{*}=\mathbf{Y}^{-1} \mathbf{v}=\left[\begin{array}{cc}
2 / 3 & -1 / 3 \\
2 / 3 & 2 / 3
\end{array}\right]\left[\begin{array}{l}
2 \\
1
\end{array}\right]=2\left[\begin{array}{c}
2 / 3 \\
2 / 3
\end{array}\right]+1\left[\begin{array}{c}
-1 / 3 \\
2 / 3
\end{array}\right]=\left[\begin{array}{l}
1 \\
2
\end{array}\right]
\end{gathered}
$$

- \mathbf{v}^{*} holds the coordinates in the new basis

Change of Basis for a Linear Transformation

We know

$$
\mathbf{v}=\mathbf{Y} \mathbf{v}^{*} \quad \mathbf{u}=\mathbf{W} \mathbf{v} \quad \mathbf{u}^{*}=\mathbf{Y}^{-1} \mathbf{u}
$$

- Plugging these together

$$
\begin{aligned}
\mathbf{u}^{*} & =\mathbf{Y}^{-1} \mathbf{u} \\
& =\mathbf{Y}^{-1} \mathbf{W} \mathbf{v} \\
& =\mathbf{Y}^{-1} \mathbf{W} \mathbf{Y} \mathbf{v}^{*} \\
& =\mathbf{W}^{*} \mathbf{v}^{*}
\end{aligned}
$$

$$
\mathbf{W}^{*}=\mathbf{Y}^{-1} \mathbf{W} \mathbf{Y}
$$

- To apply a transformation \mathbf{W} to the vector \mathbf{v}^{*} in the new basis:

1. Convert it to the unit basis: $\mathbf{Y} \mathbf{v}^{*}$
2. Apply the transformation: $\mathbf{W}\left(\mathbf{Y} \mathbf{v}^{*}\right)$

Eigenvectors and Eigenvalues

- Some vectors \mathbf{v} change only their length when multiplied by a matrix W

$$
\begin{aligned}
{\left[\begin{array}{cc}
4 & -1 \\
2 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
2
\end{array}\right] } & =2\left[\begin{array}{l}
1 \\
2
\end{array}\right] \\
{\left[\begin{array}{lc}
3 & 0 \\
0 & 4
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right] } & =3\left[\begin{array}{l}
1 \\
0
\end{array}\right]
\end{aligned}
$$

- These vectors are called eigenvectors and the scaling factor is called eigenvalues.
- They obey the relation $\mathbf{W} \mathbf{v}=\lambda \mathbf{v}$

■ Eigenvectors are defined for a particular transformation matrix \mathbf{W}.

Eigenvectors form a basis

- Let us assume there are n Eigenvectors and corresponding Eigenvalues

$$
\begin{aligned}
& \mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n} \\
& \lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}
\end{aligned}
$$

- Theorem
- For an $n \times n$ matrix with eigenvectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$, if they correspond to distinct eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$, then the set $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ is linearly independent.
- Hence, any vector can be expressed as a linear combination of eigenvectors

$$
\mathbf{v}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\ldots+c_{n} \mathbf{v}_{n}
$$

Eigenvectors form a basis

- This means that a transformation \mathbf{W} applied to a vector \mathbf{v} can be seen as a linear combination of eigenvectors

$$
\begin{aligned}
\mathbf{u} & =\mathbf{W} \mathbf{v} \\
& =\mathbf{W}\left(c_{1} \mathbf{v}_{1}+\ldots+c_{n} \mathbf{v}_{n}\right) \\
& =c_{1} \mathbf{W} \mathbf{v}_{1}+\ldots+c_{n} \mathbf{W} \mathbf{v}_{n} \\
& =c_{1} \lambda_{1} \mathbf{v}_{1}+\ldots+c_{n} \lambda_{n} \mathbf{v}_{n}
\end{aligned}
$$

Linear transformations in Eigen-Basis

- For each eigenvector \mathbf{y}_{i}, we have

$$
\mathbf{W} \mathbf{y}_{i}=\lambda_{i} \mathbf{y}_{i}
$$

- We can summarize them in one equation

$$
\mathbf{W} \mathbf{Y}=\mathbf{Y} \Lambda
$$

- In this case, if we apply W we just stretch

$$
\mathbf{W}^{*}=\mathbf{Y}^{-1} \mathbf{W} \mathbf{Y}=\boldsymbol{\Lambda}
$$

- It is just a reformulation, but nice!

Symmetric Matrix

- Definition
- A squared $n \times n$ matrix \mathbf{A}, is a symmetric matrix iff

$$
\begin{gathered}
\forall i, j \quad a_{i j}=a_{j i} \\
\mathbf{A}=\mathbf{A}^{\top}
\end{gathered}
$$

- Some properties
- The inverse \mathbf{A}^{-1} is also symmetric.
- A can be decomposed into $\mathbf{A}=\mathbf{Q} \mathbf{D} \mathbf{Q}^{\boldsymbol{\top}}$, where the columns of \mathbf{Q} are the eigenvectors of \mathbf{A}, and \mathbf{D} is a diagonal matrix where the entries are the corresponding eigenvalues.

Positive (semi-)Definite Matrix

- Definition
- A squared symmetric $n \times n$ matrix \mathbf{A}, is a positive definite matrix if for any vector $\mathbf{x} \in \mathbb{R}^{n}$

$$
\mathbf{x}^{\top} A \mathbf{x}>0
$$

■ Or positive semidefinite if $\mathbf{x}^{\top} \mathbf{A} \mathbf{x} \geq 0$

- These matrices are important in optimization and machine learning. For instance the covariance matrix is always positive semidefinite.

Outline

1. Vectors

2. Matrices

3. Operations and Linear Transformations

4. Wrap-Up

4. Wrap-Up

You know now:

- What vectors and matrices represent
- Which operations you can do with vectors and matrices
- What eigenvectors and eigenvalues are
- How to perform a linear transformation

Self-Test Questions

- Remember vectors and what you can do with them
- Remember matrices and what you can do with them
- What is a projection? How do you use it?
- How to compute the inverse of a matrix?
- What are Eigenvectors and Eigenvalues?
- What is a change of basis? What is a linear transformation? Are they the same?

Homework

- Reading Assignment for next lecture

■ Bishop ch. 2

- Murphy ch. 2
- MacKay ch. 1, 2

References

- If you want to grasp better the intuition behind Linear Algebra concepts
- Essence of Linear Algebra by 3Blue1Brown: https://goo.gl/9wFTgS

■ The Matrix Cookbook
■ https://www.math.uwaterloo.ca/~hwolkowi/ matrixcookbook.pdf

