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Today’s Objectives

Make you remember Linear Algebra!

I know this is mostly easy but some of you may have forgotten
all of it...

Covered Topics:
Vectors, Matrices

Linear Transformations

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 2 / 37



Outline

1. Vectors

2. Matrices

3. Operations and Linear Transformations

4. Wrap-Up

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 3 / 37



1. Vectors

Outline

1. Vectors

2. Matrices

3. Operations and Linear Transformations

4. Wrap-Up

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 4 / 37



1. Vectors

Vectors

Joe =

 37
72
175

, Mary =
 10
30
61

, Carol =
 25

65
121

, Brad =
 66

67
155

, Joe =


37
72
175
8

1946
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1. Vectors

What can you do with vectors?

Multiplication by a scalar c v

2
[
2
1

]
=

[
4
2

]

5

 −34
1

 =

 −1520
5



c v = c

 v1
...
vn

 =

 c v1
...
c vn
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1. Vectors

What can you do with vectors?

Addition of vectors v1 + v2 1
2
1

+

 2
1
3

 =

 3
3
4


[
2
1

]
+

[
0
1

]
+

[
3
−3

]
=

[
5
−1

]

 a1
...
an

+

 b1
...
bn

 =

 a1 + b1
...

an + bn
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1. Vectors

Linear Combination of Vectors

By positive recombination we
can obtain:

u = c1v1 + c2v2 + . . .+cnvn

Examples:[
1
1

]
and

[
2
2

]
[
1
1

]
and

[
2
1

]
[
1
1

]
,
[
2
1

]
and

[
−1
3

]
 1
2
0

,
 3
2
0

 and
 9
10
0
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1. Vectors

Inner Product and Length of a Vector

Inner Product

v =

 3
−1
2

, w =

 1
2
1


v · w=vᵀw = (3 · 1) + (−1 · 2) + (2 · 1) = 3

Length of a vector (Frobenius norm)
‖v‖ = (v · v)1/2

‖c v‖ = |c| ‖v‖

‖v1 + v2‖ ≤ ‖v1‖+ ‖v2‖ (triangle inequality)
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1. Vectors

Angles between Vectors

The angle between vectors is defined by
cos θ = v·w

‖v‖‖w‖ =
∑n

i=1 viwi(∑n
i=1 v

2
i

)1/2(∑n
i=1 w

2
i

)1/2
Example:

Find the angle between vectors v1 =
[
0
1

]
and v2 =

[
1
1

]
v1 · v2 = 1, ‖v1‖ = 1, ‖v2‖ =

√
2

cos θ = 1
1
√
2
= 0.707, θ = π/4
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1. Vectors

Projections of Vectors: Basic Idea

What is a projection of v onto w?

Formally

x = ‖v‖ cos θ

= ‖v‖ v · w
‖v‖ ‖w‖

=
v · w
‖w‖

Note that x is a not a vector!
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1. Vectors

Vector Transpose, Inner and Outer Products

Vector Transpose

v =

 3
1
2

, vᵀ =
[
3 1 2

]
Inner Product

vᵀu =
[
3 1 2

]  0
4
1

 =
[
6
]

Outer Product

wvᵀ =

 1
4
0

 [ 3 1 2
]
=

 3 1 2
12 4 8
0 0 0
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2. Matrices
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2. Matrices

Matrices

Examples

M =

[
3 4 5
1 0 1

]
, 2x3 matrix

N =

 3 0 0
0 7 0
0 0 1

, 3x3 matrix
P =

[
10 −1
−1 27

]
, 2x2 matrix
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2. Matrices

What can you do with Matrices?

Multiplication by Scalars

3 ·M = 3
[
3 4 5
1 0 1

]
=

[
9 12 15
3 0 3

]
Addition of Matrices

M+ N =

[
3 4 5
1 0 1

]
+

[
−1 0 2
4 1 −1

]
=

[
2 4 7
5 1 0

]
Addition is only defined for matrices with the same dimensions.

Transpose of a Matrix

Mᵀ =

[
3 4 5
1 0 1

]ᵀ
=

 3 1
4 0
5 2
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2. Matrices

Matrix-Vector multiplication

Multiplication of a Vector by a Matrix

u = Wv =
[
3 4 5
1 0 1

] 10
2

 =

[
3 · 1+ 4 · 0+ 5 · 2
1 · 1+ 0 · 0+ 1 · 2

]
=

[
13
3

]
Think of it as | |

w1 . . . wn
| |


 v1...
vn

 =

 |
v1w1+ . . . +vnwn

|


Dimensions: W ∈ RM×N, v ∈ RN×1, u ∈ RM× 1

Hence

u = v1w1 + v2w2 + v3w3 = 1
[
3
1

]
+ 0

[
4
0

]
+ 2

[
5
1

]
=

[
13
3

]
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2. Matrices

Matrix-Matrix multiplication

Multiplication of a Matrix by a Matrix

C = AB =

[
1 2 3
4 5 6

] 1 2
3 4
5 6

 =[
1 · 1+ 2 · 3+ 3 · 5 1 · 2+ 2 · 4+ 3 · 6
4 · 1+ 5 · 3+ 6 · 5 4 · 2+ 5 · 4+ 6 · 6

]
=

[
22 28
49 64

]

Dimensions: A ∈ RM×N, B ∈ RN×K, C ∈ RM×K

Verifying the right dimensions is an important sanity checker
when working with matrices
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2. Matrices

Matrix Inverse

Definition for square matrices W ∈ Rn×n

W−1W = WW−1 = I

W−1 =
1

detW
Cᵀ

where C is the cofactor matrix of W.

If W−1 exists, we say W is nonsingular.

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 18 / 37



2. Matrices

Matrix Inverse

A condition for invertibility is that the determinant has to be
different than zero.

For an intuition consider the following linear transformation
matrix

A =

[
1 0
0 0

]
, detA = 0

Applying this transformation to a vector gives

v′ = Av =
[
1 0
0 0

] [
v1
v2

]
= v1

[
1
0

]
+v2

[
0
0

]
=

[
v1
0

]
=

[
v′1
v′2

]
This transformation removes one dimension from v and projects
it as a point along the first dimension.
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2. Matrices

Matrix Inverse

Can we from A and v′ =
[
v′1 v′2

]ᵀ recover the initial vector v?
We have the following linear system of equations[

1 0
0 0

] [
v1
v2

]
=

[
v′1
v′2

]
=

[
v1
0

]

While there is only one solution for v1, there are infinitely many
solutions for v2. This means we cannot recover the initial value
of v2.

On the contrary, a nonsingular matrix, such as the identity
matrix, admits one solution.
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2. Matrices

Matrix Inverse

Example

W =

[
1 1/2
−1 1

]
, W−1 =

[
2/3 −1/3
2/3 2/3

]

Verify it!

WW−1 =
[
1 1/2
−1 1

] [
2/3 −1/3
2/3 2/3

]
=

[
1 0
0 1

]

W−1W =

[
2/3 −1/3
2/3 2/3

] [
1 1/2
−1 1

]
=

[
1 0
0 1

]
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2. Matrices

Matrix Pseudoinverse

How can we invert a matrix J ∈ Rn×m that is not squared?

Left-Pseudo Inverse J#J = (JT J)−1JT︸ ︷︷ ︸
left multiplied

J = Im

Works if J has full column rank

Right-Pseudo Inverse JJ# = J JT(JJT)−1︸ ︷︷ ︸
right multiplied

= In

Works if J has full row rank
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3. Operations and Linear Transformations
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3. Operations and Linear Transformations

Change of Basis

Basis as Unit
Vectors

New Basis (vectors
y1and y2)

Coordinates of vector v in the original coordinate system (with unit basis
vectors)

v = c1y1 + . . .+ cnyn = Yv∗

Where v∗ holds the coordinates in the new coordinate system.

To get the coordinates of v∗ (in the new basis) we just apply the inverse
transformation

v∗ = Y−1v
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3. Operations and Linear Transformations

Change of Basis - Example

We have

y1 =

[
1
−1

]
, y2 =

[
1/2
1

]

Thus

Y =

[
1 1/2
−1 1

]
, Y−1 =

[
2/3 −1/3
2/3 2/3

]

v∗ = Y−1v =
[
2/3 −1/3
2/3 2/3

] [
2
1

]
= 2

[
2/3
2/3

]
+ 1

[
−1/3
2/3

]
=

[
1
2

]
v∗ holds the coordinates in the new basis
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3. Operations and Linear Transformations

Change of Basis for a Linear Transformation

We know

v = Y v∗ u = W v u∗ = Y−1u

Plugging these together

u∗ = Y−1u
= Y−1W v
= Y−1W Y v∗

= W∗v∗

W∗ = Y−1W Y

To apply a transformation W to the vector v∗ in the new basis:

1. Convert it to the unit basis: Y v∗

2. Apply the transformation: W(Y v∗)

3. Convert the result back to the new basis space: Y−1
(
W(Y v∗)

)
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3. Operations and Linear Transformations

Eigenvectors and Eigenvalues

Some vectors v change only their length when multiplied by a matrix
W

[
4 −1
2 1

] [
1
2

]
= 2

[
1
2

]
[
3 0
0 4

] [
1
0

]
= 3

[
1
0

]

These vectors are called eigenvectors and the scaling factor is called
eigenvalues.

They obey the relation W v = λ v

Eigenvectors are defined for a particular transformation matrix W.
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3. Operations and Linear Transformations

Eigenvectors form a basis

Let us assume there are n Eigenvectors and corresponding
Eigenvalues

v1, v2, . . . , vn

λ1, λ2, . . . , λn

Theorem
For an n× n matrix with eigenvectors v1, v2, . . . , vn, if they
correspond to distinct eigenvalues λ1, λ2, . . . , λn, then the set
{v1, v2, . . . , vn} is linearly independent.

Hence, any vector can be expressed as a linear combination of
eigenvectors

v = c1v1 + c2v2 + . . .+ cnvn
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3. Operations and Linear Transformations

Eigenvectors form a basis

This means that a transformation W applied to a vector v can be
seen as a linear combination of eigenvectors

u = W v
= W(c1v1 + . . .+ cnvn)
= c1Wv1 + . . .+ cnWvn
= c1λ1v1 + . . .+ cnλnvn
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3. Operations and Linear Transformations

Linear transformations in Eigen-Basis

For each eigenvector yi, we have

W yi = λi yi

We can summarize them in one equation

W Y = YΛ

In this case, if we apply W we just stretch

W∗ = Y−1W Y = Λ

It is just a reformulation, but nice!
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3. Operations and Linear Transformations

Symmetric Matrix

Definition
A squared n× n matrix A, is a symmetric matrix iff

∀i, j aij = aji

A = Aᵀ

Some properties
The inverse A−1 is also symmetric.

A can be decomposed into A = QDQᵀ, where the columns of Q
are the eigenvectors of A, and D is a diagonal matrix where the
entries are the corresponding eigenvalues.
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3. Operations and Linear Transformations

Positive (semi-)Definite Matrix

Definition
A squared symmetric n× n matrix A, is a positive definite matrix
if for any vector x ∈ Rn

xᵀAx > 0

Or positive semidefinite if xᵀAx ≥ 0

These matrices are important in optimization and machine
learning. For instance the covariance matrix is always positive
semidefinite.
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4. Wrap-Up
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4. Wrap-Up

4. Wrap-Up

You know now:

What vectors and matrices represent

Which operations you can do with vectors and matrices

What eigenvectors and eigenvalues are

How to perform a linear transformation
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4. Wrap-Up

Self-Test Questions

Remember vectors and what you can do with them

Remember matrices and what you can do with them

What is a projection? How do you use it?

How to compute the inverse of a matrix?

What are Eigenvectors and Eigenvalues?

What is a change of basis? What is a linear transformation? Are
they the same?
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4. Wrap-Up

Homework

Reading Assignment for next lecture
Bishop ch. 2

Murphy ch. 2

MacKay ch. 1, 2
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4. Wrap-Up

References

If you want to grasp better the intuition behind Linear Algebra
concepts

Essence of Linear Algebra by 3Blue1Brown:
https://goo.gl/9wFTgS

The Matrix Cookbook
https://www.math.uwaterloo.ca/~hwolkowi/
matrixcookbook.pdf
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