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Today’s Objectives

Make you remember Linear Algebral!

I know this is mostly easy but some of you may have forgotten
all of it...

Covered Topics:
Vectors, Matrices

Linear Transformations
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Vectors
Weight
80;
37
37 10 25 66 72
Joe = 72 |,Mary=| 30 |, Carol= 65 |,Brad= 67 |,Joe= 175
175 61 121 155 8
1946
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1. Vectors

What can you do with vectors?
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L

m Multiplication by a scalar cv

2[1]=13]

L
-3 ~15 oL
5 4 = 20
1 5 2 b
s L
V1 vy
cv=c| : = e . 2 ra— 5
Vn CVn
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1. Vectors

What can you do with vectors?

m Addition of vectors v; + v,

HEHEH

ai by ay + by

an bn an + bn
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1. Vectors

Linear Combination of Vectors

! DARMSTADT

m By positive recombination we
can obtain:

B uUu=CVvs+CVva+...+ChVn

m Examples:

[ 1] 2

1 _and[ 2]
1 2

1 _and [1 ]
1
1

L]

1 3 9
2,1 2 |and | 10
| 0 0 0
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Inner Product and Length of a Vector

m Inner Product
3 1
mv=| -1 [,w=| 2
2 1
BvVv-w=vw=(3-1)+(-1-2)+(2-1)=3

m Length of a vector (Frobenius norm)
= vl = (v-v)t?

= flevif = lef vl

m |[vy + V2| < |lvi] + ||v2]| (triangle inequality)
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Angles between Vectors

m The angle between vectors is defined by
Sy Vit

( i1 Viz)l/z ( 1 sz)i/z

W ocosf = YW —
MvTTiwl]

m Example:
. 0 1
m Find the angle between vectors v; = 1 andv; = 1
Bvieva =1, i =1, |vof = V2

_ 1 _ _
] cosG'fme.7O7,0f7r/4
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Projections of Vectors: Basic Idea

What is a projection of v onto w?

Formally w

X = HVHCOSH \

= M o
HVII ||W||

vV-w

[Iw]| "

Note that x is a not a vector!
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Vector Transpose, Inner and Outer Products

m Vector Transpose

3
lv:[l],vT:[S 1 2]

2

® Inner Product

0
mviu=[3 1 2]{4]_[6]
1

m Outer Product

1 301
-va—[4][3 1 2}—{12 4
0
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Matrices
m Examples

3 45 .

lM:[1 0 1],ZXSmatrlx
300

mN=| 0 7 0 |, 3x3 matrix
0 0 1
10 -1 .

mP= { 1 27 :|,2X2 matrix
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What can you do with Matrices?

Multiplication by Scalars

toa=[5 0 s

3‘M23{1 0 1

Addition of Matrices

3 4 5 10 2 2 4 7
M+N:[1 0 1}*[4 1 —1}:[5 1 o]

Addition is only defined for matrices with the same dimensions.

Transpose of a Matrix

3 4 577
T = g
S HHE

Ul bW

N O -
| I
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Matrix-Vector multiplication

Multiplication of a Vector by a Matrix

w3 45| _[31t40e5.2] T3
=W=l101) |9 1 1r00412 )7

Think of it as
| | "1
{wl wn} : = | w1+ ... +v,,w,,}
| | Vo |

Dimensions: W € RM XN y ¢ RN X1 y e RMx 1

Hence

U= VW +ViWy; +vzwz =1 3 +0 4 + 2 >\ _ |13
— V1wl 2W?2 3W3 — 1 O 1_ 3
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Matrix-Matrix multiplication

o/
?Xf’; DARMSTADT

= Multiplication of a Matrix by a Matrix
1 2
cona- |12 3]]5 0
56

1-142-3+43.5 1.24+2-44+3-6] [22 28
4.145.346-5 4.24+5-4+6-6 | | 49 64

m Dimensions: A € RM*N B ¢ RN*K € e RM*xK

m Verifying the right dimensions is an important sanity checker
when working with matrices
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Matrix Inverse

Definition for square matrices W € R"*"
W-lw =ww-t =|

1

~ detW
where C is the cofactor matrix of W.

wt T

If W—1 exists, we say W is nonsingular.
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Matrix Inverse

A condition for invertibility is that the determinant has to be
different than zero.

For an intuition consider the following linear transformation
matrix

10
A_{O 0}, detA =0

Applying this transformation to a vector gives

vome (3 8][3)n 3] [8- (3]

This transformation removes one dimension from v and projects
it as a point along the first dimension.
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Matrix Inverse

Canwe fromAand v =[ v; v, | recover the initial vector v?
We have the following linear system of equations

10 vi|l _ [vi] [ v

00 vi| | v5] | O
While there is only one solution for vy, there are infinitely many

solutions for v5. This means we cannot recover the initial value
of v;.

On the contrary, a nonsingular matrix, such as the identity
matrix, admits one solution.



Matrix Inverse

w40 e [ SR
w02 )

w3 35

]
| |

o

|
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Matrix Pseudoinverse

How can we invert a matrix J € R"*" that is not squared?

Left-Pseudo Inverse J#) = (J/))"H7 1=1,

——
left multiplied
Works if J has full column rank

Right-Pseudo Inverse J# =1 )77~ =1,

N—_——
right multiplied
Works if J has full row rank
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Change of Basis

Basis as Unit New Basis (vectors
Vectors yiandy;)
/
/
/.,
// -
Y2/ v
v
y1 .\\
N
\\

Coordinates of vector v in the original coordinate system (with unit basis
vectors)

V==0CY1+ ...+ Yo = YW*
Where v* holds the coordinates in the new coordinate system.

To get the coordinates of v* (in the new basis) we just apply the inverse
transformation
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Change of Basis - Example

B We have
1 1/2
V1={_1],V22{ { }

B Thus

S A E

et B LS BT R R E

® v* holds the coordinates in the new basis
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Change of Basis for a Linear Transformation

We know
W
*
v=Yv¥ u=Wv u*=Y1lu vE n
Plugging these together Y'I Y
vt = Y lu
_ —1
= Y "Wy v "
= Y lwyv w
= W*v*
W =Y-lwy

To apply a transformation W to the vector v* in the new basis:

Convert it to the unit basis: Y v*
Apply the transformation: W(Y v*)

Convert the result back to the new basis space: Y~ (W(Y v*))
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Eigenvectors and Eigenvalues

Some vectors v change only their length when multiplied by a matrix
w

These vectors are called eigenvectors and the scaling factor is called
eigenvalues.

They obey the relation Wv = \v

Eigenvectors are defined for a particular transformation matrix W.
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Eigenvectors form a basis

Let us assume there are n Eigenvectors and corresponding
Eigenvalues

Vi,V2,...,Vy
ALA2, A
Theorem
For an n x n matrix with eigenvectors vy, v, ..., v, if they
correspond to distinct eigenvalues A1, Ay, ..., Ay, then the set
{v1,V2,...,Vv,} is linearly independent.

Hence, any vector can be expressed as a linear combination of
eigenvectors

V=1C_CV1+CVy+...+CyVp



Eigenvectors form a basis

This means that a transformation W applied to a vector v can be
seen as a linear combination of eigenvectors

u = Wy
= W(c1vi + ...+ CaVn)
= qWvi + ...+ )Wy,
= QQAMV1+ ...+ CAVp



Linear transformations in Eigen-Basis

For each eigenvector y;, we have

Wy, =\ y;

We can summarize them in one equation

WY=YA

In this case, if we apply W we just stretch

W =Y"IWY=A

It is just a reformulation, but nice!
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Symmetric Matrix

Definition
A squared n x n matrix A, is a symmetric matrix iff
Vi,j aj = aj
A=AT

Some properties
The inverse A~ is also symmetric.

A can be decomposed into A = QDQT, where the columns of Q
are the eigenvectors of A, and D is a diagonal matrix where the
entries are the corresponding eigenvalues.
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Positive (semi-)Definite Matrix

Definition

A squared symmetric n x n matrix A, is a positive definite matrix
if for any vector x € R”

XTAx > 0
Or positive semidefinite if xTAx > 0

These matrices are important in optimization and machine
learning. For instance the covariance matrix is always positive
semidefinite.
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4. Wrap-Up

You know now:

What vectors and matrices represent
Which operations you can do with vectors and matrices
What eigenvectors and eigenvalues are

How to perform a linear transformation
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Self-Test Questions

Remember vectors and what you can do with them
Remember matrices and what you can do with them
What is a projection? How do you use it?

How to compute the inverse of a matrix?

What are Eigenvectors and Eigenvalues?

What is a change of basis? What is a linear transformation? Are
they the same?



4. Wrap-Up
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Homework

m Reading Assignment for next lecture
m Bishop ch. 2

= Murphy ch. 2
= MacKay ch. 1, 2
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4. Wrap-Up

References

m If you want to grasp better the intuition behind Linear Algebra
concepts

m Essence of Linear Algebra by 3BluelBrown:
https://goo.gl/9wFTgS

m The Matrix Cookbook

m https://www.math.uwaterloo.ca/~hwolkowi/
matrixcookbook.pdf
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