

Statistical Machine Learning

Lecture 03: Statistics Refresher

Kristian Kersting TU Darmstadt

Summer Term 2020

Today's Objectives

- Make you remember your sweetest high school dreams: statistics & probabilities.
- This topic is harder than most of remaining chapters, but you will need it to continue!
- Covered Topics:
 - Random Variables: discrete & continuous
 - Distributions: discrete & continuous
- Expected values and moments
- Joint distributions, conditional distributions, independence

Outline

1. Random Variables and Common Distributions

Random Variables Discrete Distributions Continuous Distributions

- 2. Basic Rules of Probability
- 3. Expectations, Variance and Moments
- 4. Exponential Family
- 5. Information and Entropy
- 6. Wrap-Up

Outline

1. Random Variables and Common Distributions

Random Variables Discrete Distributions Continuous Distributions

- 2. Basic Rules of Probability
- 3. Expectations, Variance and Moments
- 4. Exponential Family
- 5. Information and Entropy
- 6. Wrap-Up

Random Variables

What is a random variable?

- Is a random number determined by chance
- More formally, drawn according to a probability distribution
- Typical random variables in statistical learning: input data, output data, noise
- What is a probability distribution?
 - Describes the probability (density) that the random variable will be equal to a certain value.
 - The probability distribution can be given by the physics of an experiment (e.g., throwing dice)

Random Variables

Important concept: The data generating model

- E.g., what is the data generating model for: i) throwing dice, ii) regression, iii) classification, iv) visual perception?
- Problem: On which time scale is a distribution observed?

Uniform Distribution

All data is equally probable within a bounded region R $p(x) = \frac{1}{R}$

The uniform distribution plays an important role in entropy methods and information theory.

K. Kersting based on Slides from J. Peters • Statistical Machine Learning • Summer Term 2020

Discrete Distributions

- The random variables take on discrete values
 - E.g, when throwing a dice, the possible values are (countably finite set):

$$x_i \in \{1, 2, 3, 4, 5, 6\}$$

E.g., the number of sand grains at the beach (countably infinite set):

$$x_i \in \mathbb{N}$$

Discrete Distributions

The probabilities sum to 1

$$\sum_i p(x_i) = 1$$

- Discrete distributions are particularly important in classification and decision making
- A discrete distribution is described by a probability mass function (or frequency function), which is a normalized histogram

Bernoulli Distribution

A Bernoulli random variable only takes on two values, for example 0 and 1

$$x \in \{0, 1\}$$

$$p(x = 1|\mu) = \mu$$

$$Bern(x|\mu) = \mu^{x}(1-\mu)^{1-x}$$

$$\mathbb{E}[x] = \mu$$

$$var[x] = \mu(1-\mu)$$

The only parameter of a Bernoulli distribution is μ, i.e., it is completely defined using only this parameter

K. Kersting based on Slides from J. Peters • Statistical Machine Learning • Summer Term 2020 10 / 64

Bernoulli Distribution

Bernoulli distributions are often modeled with sigmoidal nonlinearites in statistical learning

Binomial Distribution

- Binomial variables are a sequence of N repeated Bernoulli variables
- One interpretation is "what is the probability of getting $m \in \mathbb{N}$ heads in *N* trials?"

$$Bin(m|N,\mu) = {\binom{N}{m}} \mu^m (1-\mu)^{N-m}$$
$$\mathbb{E}[m] = \sum_{m=0}^N mBin(m|N,\mu) = N\mu$$
$$var[m] = \sum_{m=0}^N (m-\mathbb{E}[m])^2 Bin(m|N,\mu) = N\mu(1-\mu)$$

Binomial Distribution

- The Binomial distribution is completely defined with N the number of samples and μ the probability that one sample is equal to 1
- Binomial variables are important for example in density estimation: "What is the probability that k out of n data points fall into region R?"

Binomial Distribution

K. Kersting based on Slides from J. Peters • Statistical Machine Learning • Summer Term 2020 14 / 64

Multinoulli Distribution

- Multinoulli variables, also called Categorical variables in some literature, are a generalization of binomial variables to multiple outputs (e.g., multiple classes)
- 1-of-K coding scheme (also called one-hot encoding)

$$\mathbf{x} = (0, 0, 1, 0, 0, 0)^{\mathsf{T}}$$

$$p(\mathbf{x}|\boldsymbol{\mu}) = \prod_{k=1}^{K} \mu_k^{\mathbf{x}_k} \quad \forall k : \mu_k \ge 0 \quad \text{and} \quad \sum_{k=1}^{K} \mu_k = 1$$
$$\mathbb{E}\left[\mathbf{x}|\boldsymbol{\mu}\right] = \sum_{\mathbf{x}} p(\mathbf{x}|\boldsymbol{\mu})\mathbf{x} = (\mu_1, \dots, \mu_K)^{\mathsf{T}}$$
$$\sum_{\mathbf{x}} p(\mathbf{x}|\boldsymbol{\mu}) = \sum_{k=1}^{K} u_k = 1$$

11

Multinomial Distribution

- *N* independent trials can result in one of *K* types of outcome
- What is the probability that in N trials, the frequency of the K classes is m_1, m_2, \ldots, m_K

$$\mathsf{Mult}(m_1, m_2, \dots, m_k | \boldsymbol{\mu}, N) = \begin{pmatrix} N \\ m_1, m_2, \dots, m_K \end{pmatrix} \prod_{k=1}^{K} \mu_k^{m_k}$$
$$\mathbb{E}[m_k] = N\mu_k$$
$$\mathsf{var}[m_k] = N\mu_k(1 - \mu_k)$$
$$\mathsf{cov}[m_j m_k] = -N\mu_j \mu_k$$

Multinomial Distribution

The multinomial distribution play an important role in multi-class classification (N = 1)

Poisson Distribution

The Poisson distribution is the binomial distribution where the number of trials *N* goes to infinity, and the probability of success on each trial, μ , goes to zero, such that $N\mu = \lambda$ is a constant

$$p(m|\lambda) = \frac{\lambda^m}{m!}e^{-\lambda}$$

- Where the *m* is the number of "successes"
- For example, Poisson distributions are an important model for t he firing characteristics of biological neurons. They are also used as an approximation to binomial variables with small p

Poisson Distribution

- Example: What is the probability of firing of a *Purkinje* neuron in the cerebellum in a 10ms time interval?
 - We know that the average firing of these neurons is about 40Hz, $\lambda = 40 {\rm Hz} \times 0.01 {\rm s}$
 - Note that this approximation only work if the number of spike is low in the given time interval

Continuous Distributions

- The random variables take on continuous values
- Continuous distributions are discrete distributions where the number of discrete values goes to infinity, while the probability of each value goes to zero
- A continuous distribution is described by a probability density function, which integrates to 1

$$\int_{-\infty}^{+\infty} p(x) dx = 1$$

- Continuous distributions are particularly important in regression and unsupervised learning
- A lot of Machine Learning is centered around how to better model a density function

Example of a probability density function p(x)

K. Kersting based on Slides from J. Peters • Statistical Machine Learning • Summer Term 2020 21 / 64

The Gaussian Distribution

K. Kersting based on Slides from J. Peters • Statistical Machine Learning • Summer Term 2020 22 / 64

Central Limit Theorem

Why are Gaussians SO important?

The distribution of the sum of N i.i.d. (independent and identically distributed) random variables becomes increasingly Gaussian as N grows

Central Limit Theorem

Example: N uniform [0,1] random variables

Gaussians are often a good model of data

Working with Gaussians leads to analytic solutions for complex operations

K. Kersting based on Slides from J. Peters • Statistical Machine Learning • Summer Term 2020 24 / 64

1. Random Variables and Common Distributions : Continuous Distributions

The Multivariate Gaussian Distribution

$$p(\mathbf{x}) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{D/2}} \frac{1}{|\boldsymbol{\Sigma}|^{1/2}} \exp\left\{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\mathsf{T}} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right\}$$

K. Kersting based on Slides from J. Peters • Statistical Machine Learning • Summer Term 2020 25 / 64

The Multivariate Gaussian Distribution

$$p(\mathbf{x}) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{D/2}} \frac{1}{|\boldsymbol{\Sigma}|^{1/2}} \exp\left\{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\mathsf{T}}\boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right\}$$

To clear some confusion: for a chosen vector \mathbf{x} , $\mathcal{N}(\mathbf{x}|\mu, \Sigma)$ is a real number with the probability density of \mathbf{x} (which can be greater than 1, only the integral of the probability density function needs to be 1). The mean μ is just a specific vector amongst all the possible vectors. The covariance matrix Σ tells us how two dimensions of a vector are related to each other.

Geometry of the Multivariate Gaussian

$$\Delta^{2} = (\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})$$
$$\boldsymbol{\Sigma}^{-1} = \sum_{i=1}^{D} \frac{1}{\lambda_{i}} \mathbf{u}_{i} \mathbf{u}_{i}^{\mathsf{T}}$$
$$\Delta^{2} = \sum_{i=1}^{D} \frac{y_{i}^{2}}{\lambda_{i}}$$
$$y_{i} = \mathbf{u}_{i}^{\mathsf{T}} (\mathbf{x} - \boldsymbol{\mu})$$

Δ^2 is the Mahalanobis distance.

Outline

1. Random Variables and Common Distributions Random Variables Discrete Distributions Continuous Distributions

2. Basic Rules of Probability

3. Expectations, Variance and Moments

- 4. Exponential Family
- 5. Information and Entropy

6. Wrap-Up

2. Basic Rules of Probability

Joint Distribution

p(x,y)

Marginal Distribution

$$p(y) = \int p(x,y) dx$$

Conditional Distribution

$$p(y|x) = rac{p(x,y)}{p(x)}$$

2. Basic Rules of Probability

Probabilistic Independence

$$p(x,y)=p(x)p(y)$$

Chain Rule of Probabilities

$$p(x_1,...,x_n) = p(x_1|x_2,...,x_n)p(x_2,...,x_n)$$

= $p(x_1|x_2,...,x_n)p(x_2|x_3,...,x_n)...p(x_{n-1}|x_n)p(x_n)$

Bayes Rule

$$p(y|x) = \frac{p(x|y)p(y)}{p(x)}$$

$\textit{posterior} \propto \textit{likelihood} \times \textit{prior}$

- **posterior**: p(y|x)
- likelihood: p(x|y)
- **prior:** *p*(*y*)

$$p(x) = \int p(x,y) dy = \int p(x|y) p(y) dy$$

2. Basic Rules of Probability

Partitioned Gaussian Distributions

$$p(\mathbf{x}) = \mathcal{N} \left(\mathbf{x} | \boldsymbol{\mu}, \boldsymbol{\Sigma}
ight)$$
 $\mathbf{x} = \begin{pmatrix} \mathbf{x}_a \\ \mathbf{x}_b \end{pmatrix} \qquad \boldsymbol{\mu} = \begin{pmatrix} \boldsymbol{\mu}_a \\ \boldsymbol{\mu}_b \end{pmatrix} \qquad \boldsymbol{\Sigma} = \begin{pmatrix} \boldsymbol{\Sigma}_{aa} & \boldsymbol{\Sigma}_{ab} \\ \boldsymbol{\Sigma}_{ba} & \boldsymbol{\Sigma}_{bb} \end{pmatrix}$
 $\mathbf{\Lambda} \equiv \boldsymbol{\Sigma}^{-1} \qquad \mathbf{\Lambda} = \begin{pmatrix} \mathbf{\Lambda}_{aa} & \mathbf{\Lambda}_{ab} \\ \mathbf{\Lambda}_{ba} & \mathbf{\Lambda}_{bb} \end{pmatrix}$

 Λ is the precision matrix.

2. Basic Rules of Probability

Partitioned Conditionals and Marginals

Partitioned Conditionals and Marginals

$$p(\mathbf{x}_{a}|\mathbf{x}_{b}) = \mathcal{N}\left(\mathbf{x}_{a}|oldsymbol{\mu}_{a|b}, oldsymbol{\Sigma}_{a|b}
ight)$$

$$egin{array}{rcl} \Sigma_{a|b} &=& \Lambda_{aa}^{-1} = \Sigma_{aa} - \Sigma_{ab} \Sigma_{bb}^{-1} \Sigma_{ba} \ &=& \Sigma_{a|b} \left\{ \Lambda_{aa} \mu - \Lambda_{ab} \left(\mathbf{x}_b - \mu
ight)
ight\} \ &=& \mu_a + \Sigma_{ab} \Sigma_{bb}^{-1} \left(\mathbf{x}_b - \mu_b
ight) \end{array}$$

$$p(\mathbf{x}_a) = \int p(\mathbf{x}_a, \mathbf{x}_b) d\mathbf{x}_b$$

= $\mathcal{N}(\mathbf{x}_a | \boldsymbol{\mu}_a, \boldsymbol{\Sigma}_{aa})$

Important result: If the joint distribution $p(\mathbf{x}_{a}, \mathbf{x}_{b})$ is Gaussian, then the conditional distributions $p(\mathbf{x}_{a} | \mathbf{x}_{b})$ and $p(\mathbf{x}_{b} | \mathbf{x}_{a})$ are also Gaussians. Moreover, the marginal distributions $p(\mathbf{x}_{a})$ and $p(\mathbf{x}_{b})$ are also Gaussians

Outline

1. Random Variables and Common Distributions Random Variables

Continuous Distributions

2. Basic Rules of Probability

3. Expectations, Variance and Moments

- 4. Exponential Family
- 5. Information and Entropy

6. Wrap-Up

K. Kersting based on Slides from J. Peters • Statistical Machine Learning • Summer Term 2020 35 / 64

Expectation

$$\mathbb{E}_{x \sim p(x)} [f(x)] = \mathbb{E}_x [f] = \mathbb{E} [f] = \begin{cases} \sum_x p(x) f(x) & \text{discrete case} \\ \int p(x) f(x) dx & \text{continuous case} \end{cases}$$

Conditional Expectation

$$\mathbb{E}_{x \sim p(x|y)} [f(x)] = \mathbb{E}_x [f|y] = \begin{cases} \sum_x p(x|y)f(x) & \text{discrete case} \\ \int p(x|y)f(x)dx & \text{continuous case} \end{cases}$$

Approximate Expectation

$$\mathbb{E}\left[f\right] = \int f(x)p(x)\mathsf{d}x \approx \frac{1}{N}\sum_{n=1}^{N}f(x_n)$$

- We sample *N* points from the distribution p(x) and compute the function at those points. The probability of computing $f(x_n)$ for a certain point x_n is given by the probability of sampling $p(x_n)$
- This result is very important! When there is no analytical solution, we can use this to approximate integrals by sampling!

Example: What is the expectation of the following distribution?

- Some rules of expectation $\mathbb{E}[a\mathbf{x}] = a\mathbb{E}[\mathbf{x}]$ $\mathbb{E}[\mathbf{x} + \mathbf{y}] = \mathbb{E}[\mathbf{x}] + \mathbb{E}[\mathbf{y}]$ $\mathbb{E}[\mathbf{x}\mathbf{y}] = \mathbb{E}[\mathbf{x}]\mathbb{E}[\mathbf{y}]$ only if \mathbf{x} and \mathbf{y} are statistically independent! $\mathbb{E}[\sum_{i} a_{i}x_{i}] = \sum_{i} a_{i}\mathbb{E}[x_{i}]$
- Expectation of functions $\mathbb{E}[g(\mathbf{x})] = \int g(\mathbf{x})p(\mathbf{x})d\mathbf{x}$ In general $\mathbb{E}[g(\mathbf{x})] \neq g(\mathbb{E}[\mathbf{x}])$

Variance and Covariance

Variances give a measure of dispersion - the expected spread of the variable in relation to its mean

$$\operatorname{var}\left[x\right] = \mathbb{E}\left[\left(x - \mathbb{E}\left[x\right]\right)^{2}\right] = \mathbb{E}\left[x^{2}\right] - \mathbb{E}\left[x\right]^{2}$$

Variance and Covariance

Covariances give a measure of correlation - how much two variables change together

$$\mathsf{cov}\left[x,y
ight] = \mathbb{E}_{x,y}\left[\left(x - \mathbb{E}\left[x
ight]
ight)\left(y - \mathbb{E}\left[y
ight]
ight)
ight] \ = \mathbb{E}_{x,y}\left[xy
ight] - \mathbb{E}_{x}[x]\mathbb{E}_{y}\left[y
ight]$$

$$\begin{aligned} \mathsf{cov}\left[\mathbf{x},\mathbf{y}\right] &= \mathbb{E}_{\mathbf{x},\mathbf{y}}\left[\left(\mathbf{x} - \mathbb{E}\left[\mathbf{x}\right]\right)\left(\mathbf{y} - \mathbb{E}\left[\mathbf{y}\right]\right)^{\mathsf{T}}\right] \\ &= \mathbb{E}_{\mathbf{x},\mathbf{y}}\left[\left(\mathbf{x} - \mathbb{E}\left[\mathbf{x}\right]\right)\left(\mathbf{y}^{\mathsf{T}} - \mathbb{E}\left[\mathbf{y}^{\mathsf{T}}\right]\right)\right] \\ &= \mathbb{E}_{\mathbf{x},\mathbf{y}}\left[\mathbf{x}\mathbf{y}^{\mathsf{T}}\right] - \mathbb{E}_{\mathbf{x}}\left[\mathbf{x}\right]\mathbb{E}_{\mathbf{y}}\left[\mathbf{y}^{\mathsf{T}}\right]\end{aligned}$$

3. Expectations, Variance and Moments

Variance and Covariance

Note the very important rule

$$\begin{split} \mathbb{E}\left[\mathbf{x}\mathbf{x}^{\mathsf{T}}\right] &= \mathbb{E}_{\mathbf{x}}[\mathbf{x}]\mathbb{E}_{\mathbf{x}}\left[\mathbf{x}^{\mathsf{T}}\right] + \operatorname{cov}\left[\mathbf{x},\mathbf{x}\right] \\ &= \mu\mu^{\mathsf{T}} + \Sigma \end{split}$$

Moments of Random Variables

- Definition of a Moment $m_n = \mathbb{E}[x^n]$
- Definition of a Central Moment $cm_n = \mathbb{E}\left[(x \mu)^n\right]$
- cm2: variance
- cm3: skewness (measure of asymmetry)
- cm4: kurtosis (measure of heavy tailed-ness and light tailed-ness)

3. Expectations, Variance and Moments

Moments of the Multivariate Gaussian

$$\begin{split} \mathbb{E}\left[\mathbf{x}\right] &= \frac{1}{(2\pi)^{D/2}} \frac{1}{\left|\boldsymbol{\Sigma}\right|^{1/2}} \int \exp\left\{-\frac{1}{2} \left(\mathbf{x} - \boldsymbol{\mu}\right)^{\mathsf{T}} \boldsymbol{\Sigma}^{-1} \left(\mathbf{x} - \boldsymbol{\mu}\right)\right\} \mathbf{x} \mathsf{d}\mathbf{x} \\ &= \frac{1}{(2\pi)^{D/2}} \frac{1}{\left|\boldsymbol{\Sigma}\right|^{1/2}} \int \exp\left\{-\frac{1}{2} \mathbf{z}^{\mathsf{T}} \boldsymbol{\Sigma}^{-1} \mathbf{z}\right\} (\mathbf{z} + \boldsymbol{\mu}) \, \mathsf{d}\mathbf{z} \end{split}$$

Thanks to the asymmetry of $\mathbf{z}, \mathbb{E}\left[\mathbf{x}
ight] = oldsymbol{\mu}$

3. Expectations, Variance and Moments

Moments of the Multivariate Gaussian

$$\mathbb{E}\left[\mathbf{X}\mathbf{X}^{\intercal}
ight]=oldsymbol{\mu}oldsymbol{\mu}^{\intercal}+\Sigma$$

$$\operatorname{cov}\left[\mathbf{x}
ight]=\operatorname{cov}\left[\mathbf{x},\mathbf{x}
ight]=\mathbb{E}\left[\left(\mathbf{x}-\mathbb{E}\left[\mathbf{x}
ight]
ight)\left(\mathbf{x}-\mathbb{E}\left[\mathbf{x}
ight]
ight)^{\intercal}
ight]=\Sigma$$

K. Kersting based on Slides from J. Peters • Statistical Machine Learning • Summer Term 2020 45 / 64

Outline

- 1. Random Variables and Common Distributions
 - Random Variables Discrete Distributions Continuous Distributions
- 2. Basic Rules of Probability
- 3. Expectations, Variance and Moments

4. Exponential Family

- 5. Information and Entropy
- 6. Wrap-Up

- The exponential family are a large class of distributions that are all analytically appealing, because taking the log of them decomposes them into simple terms
- All distributions from this family are uni-modal

$$p(\mathbf{x}|\boldsymbol{\eta}) = h(\mathbf{x}) g(\boldsymbol{\eta}) \exp \{\boldsymbol{\eta}^{\mathsf{T}} \mathbf{u}(\mathbf{x})\}$$

where η is the natural parameter and

$$g\left(\boldsymbol{\eta}
ight) \int h\left(\mathbf{x}
ight) \exp\left\{ \boldsymbol{\eta}^{\intercal}\mathbf{u}(\mathbf{x})
ight\} \mathrm{d}\mathbf{x}=1$$

hence g can be interpreted as a normalization coefficient

Exponential Family - Bernoulli Distribution

The Bernoulli Distribution

$$p(x|\mu) = \text{Bern}(x|\mu) = \mu^{x} (1-\mu)^{1-x}$$

= exp {x ln \(\mu + (1-x)\) ln (1-\(\mu))}
= (1-\(\mu)\) exp {ln \(\begin{pmatrix} \mu \\ 1-\(\mu)\) x}

Comparing with the general form we see that

$$\eta = \ln\left(\frac{\mu}{1-\mu}\right), \quad \mu = \underbrace{\sigma\left(\eta\right) = \frac{1}{1 + \exp\left(-\eta\right)}}_{\text{Logistic sigmoid}}$$

Exponential Family - Bernoulli Distribution

Hence, the Bernoulli Distribution can be written as

$$p(\mathbf{x}|\mu) = \sigma(-\eta) \exp(\eta \mathbf{x})$$

where

$$u(x) = x$$
, $h(x) = 1$, $g(\eta) = 1 - \sigma(\eta) = \sigma(-\eta)$

Exponential Family - Multinoulli Distribution

The Multinoulli Distribution also belongs to the exponential family

$$p(\mathbf{x}|\boldsymbol{\mu}) = \prod_{k=1}^{M} \mu_k^{x_k} = \exp\left\{\sum_{k=1}^{M} x_k \ln \mu_k\right\} = h(\mathbf{x})g(\boldsymbol{\eta}) \exp\left\{\boldsymbol{\eta}^{\mathsf{T}}\mathbf{u}(\mathbf{x})\right\}$$

where

$$\begin{split} \mathbf{x} &= (x_1, \dots, x_M)^{\mathsf{T}}, \quad \boldsymbol{\eta} = (\eta_1, \dots, \eta_M)^{\mathsf{T}}, \quad \eta_k = \ln u_k \\ \mathbf{u}(\mathbf{x}) &= \mathbf{x}, \quad h(\mathbf{x}) = 1, \quad g(\boldsymbol{\eta}) = 1 \end{split}$$

Note that the parameters η_k have to be chosen in a way to guarantee that $p(\mathbf{x}|\boldsymbol{\mu})$ is a valid probability distribution. Particularly, they must satisfy

$$\sum_{\mathbf{x}} p(\mathbf{x}|\boldsymbol{\mu}) = 1 \Longrightarrow \sum_{k=1}^{M} \mu_k = 1$$

K. Kersting based on Slides from J. Peters • Statistical Machine Learning • Summer Term 2020

Exponential Family - Multinoulli Distribution

Let $\mu_M = 1 - \sum_{k=1}^{M-1} \mu_k$, which ensures that the distribution is well defined. We can rewrite $p(\mathbf{x}|\boldsymbol{\mu})$ and observe that

$$\eta_{k} = \ln\left(\frac{\mu_{k}}{1 - \sum_{j=1}^{M-1} \mu_{j}}\right), \quad \mu_{k} = \underbrace{\frac{\exp\left(\eta_{k}\right)}{1 + \sum_{j=1}^{M-1} \exp\left(\eta_{j}\right)}}_{\text{Softmax}}$$

Here the parameters η_k can be chosen independently, since

$$0\leq \mu_k\leq 1, \quad \sum_{k=1}^{M-1}\mu_k\leq 1$$

Exponential Family - Multinoulli Distribution

The Multinoulli Distribution can then be written as

$$p\left(\mathbf{x}|\boldsymbol{\mu}
ight)=h\left(\mathbf{x}
ight)g\left(\boldsymbol{\eta}
ight)\exp\left\{\boldsymbol{\eta}^{\intercal}\mathbf{u}\left(\mathbf{x}
ight)
ight\}$$

where

$$oldsymbol{\eta} = (\eta_1, \dots, \eta_{M-1}, 0)^{\mathsf{T}}, \quad \mathbf{u}(\mathbf{x}) = \mathbf{x}, \quad h(\mathbf{x}) = 1$$
 $g(oldsymbol{\eta}) = \left(1 + \sum_{k=1}^{M-1} \exp(\eta_k)\right)^{-1}$

Exponential Family - Gaussian Distribution

The Gaussian Distribution can be rewritten as

$$p(x|\mu,\sigma^{2}) = \frac{1}{(2\pi\sigma^{2})^{1/2}} \exp\left\{-\frac{1}{2\sigma^{2}}(x-\mu)^{2}\right\}$$
$$= \frac{1}{(2\pi\sigma^{2})^{1/2}} \exp\left\{-\frac{1}{2\sigma^{2}}x^{2} + \frac{\mu}{\sigma^{2}}x - \frac{1}{2\sigma^{2}}\mu^{2}\right\}$$
$$= h(x)g(\eta) \exp\left\{\eta^{\mathsf{T}}\mathbf{u}(x)\right\}$$

where

$$\boldsymbol{\eta} = \left(-\frac{1}{2\sigma^2}, \frac{\mu}{\sigma^2}\right)^{\mathsf{T}}, \quad \mathbf{u}(x) = \left(x^2, x\right)^{\mathsf{T}}, \quad h(\mathbf{x}) = 1$$
$$g(\boldsymbol{\eta}) = \sqrt{\frac{-\eta_1}{\pi}} \exp\left(\frac{\eta_2^2}{4\eta_1}\right)$$

K. Kersting based on Slides from J. Peters • Statistical Machine Learning • Summer Term 2020 53 / 64

Outline

1. Random Variables and Common Distributions Random Variables

Discrete Distributions Continuous Distributions

- 2. Basic Rules of Probability
- 3. Expectations, Variance and Moments
- 4. Exponential Family
- 5. Information and Entropy
- 6. Wrap-Up

5. Information and Entropy

Information Theory - Core Questions

- Classical Question: How can we represent information compactly, i.e., using as few bits as possible?
 - Compressing text like with GZIP
 - Compressing pictures like in JPEG, movies like in MPEG
 - Compressing sound using MP3
- Classical Question: How can we transmit or store data reliably?
 - ECC memory
 - Error Correction on CDs
 - Communication with space probes

5. Information and Entropy

Information Theory - Core Questions

Machine Learning Questions:

- How can we measure complexity?
- How can we measure "distances" between probability distributions?
- How can we reconstruct data?
- We are not covering all questions here... :)

What is Information?

				_
i	a_i	p_i		~
1	а	.0575		C
2	ъ	.0128		
3	с	.0263		٧
4	d	.0285		v
5	е	.0913		C
6	f	.0173		
7	g	.0133		н
8	h	.0313		
9	1	.0599		C
10	j	.0006		
11	k	.0084		F
12	1	.0335		
13	m	.0235		¢
14	n	.0596	_	-
15	0	.0689		ĉ
16	р	.0192		
17	q	.0008		
18	r	.0508		-
19	S	.0567		
20	t	.0706		t
21	u	.0334		5
22	v	.0069		4
23	W	.0119		
24	х	.0073		
25	У	.0164		
26	z	.0007		
27	-	.1928		

All letters in the English alphabet have a very	
different probability <i>p_i</i> of occurring	

- What is the number of bits you need to represent 27 characters? $\lceil \log_2 27 \rceil \approx \lceil 4.75 \rceil = 5$ bits
- How can we measure the information in a single character? $h(p_i) = -\log_2 p_i$. Events with a low probability correspond to high information content
- So, what is the average information in a character in an English text?

■ $H(p) = \mathbb{E}[h(.)] = \sum_{i} p_i h(p_i) = -\sum_{i} p_i \log_2 p_i \approx 4.1$ This quantity is called the entropy. On average, with the right encoding, we can represent each letter with 4.1 bits instead of 4.7 5. Information and Entropy

Entropy of Distributions

What is the "difference" between these distributions?

Kullback-Leibler Divergence

The Kullback-Leibler Divergence - KL Divergence - is a similarity measure between two distributions, and is defined as

$$\mathsf{KL}(p||q) = -\int p(x) \ln q(x) \mathrm{d}x - \left(-\int p(x) \ln p(x) \mathrm{d}x\right)$$
$$= -\int p(x) \ln \frac{q(x)}{p(x)} \mathrm{d}x$$

■ It represents the average additional amount of extra bits required to specify a symbol x, given that its underlying probability distribution is the estimated q(x) and not the true one p(x)

Kullback-Leibler Divergence

Some properties

- It is not a distance: $KL(p||q) \neq KL(q||p)$
- It is non-negative: $KL(p||q) \ge 0$

If
$$\forall x \ p(x) = q(x)$$
: KL $(p||q) = 0$

There are other metrics of similarity, but as we will see further in the course, the KL Divergence is deeply connected with maximum likelihood estimation

Outline

1. Random Variables and Common Distributions

Random Variables Discrete Distributions Continuous Distributions

- 2. Basic Rules of Probability
- 3. Expectations, Variance and Moments
- 4. Exponential Family
- 5. Information and Entropy

6. Wrap-Up

6. Wrap-Up

You know now:

- What random variables are (both continuous and discrete)
- What probability distributions are
- Some basic rules of probability theory
- What expectation and variance are
- What a Gaussian distribution is and why it is so important
- What information and entropy are
- How to measure the similarity between two probability distributions

Self-Test Questions

- What is a random variable?
- What is a distribution?
- What is a Binomial distribution?
- How does a Poisson distribution relate to Binomial distributions?
- What is a Gaussian distribution?
- What is an expectation?
- What is a joint distribution?
- What is a conditional distribution?
- What is a distribution with a lot of information?
- How to measure the difference between distributions?

Reading Assignment for next lecture

Bishop appendix E