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Today’s Objectives

Make you remember your sweetest high school dreams: statistics
& probabilities.

This topic is harder than most of remaining chapters, but you
will need it to continue!

Covered Topics:
Random Variables: discrete & continuous

Distributions: discrete & continuous

Expected values and moments

Joint distributions, conditional distributions, independence
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1. RandomVariables and CommonDistributions : RandomVariables

Random Variables

What is a random variable?
Is a random number determined by chance

More formally, drawn according to a probability distribution

Typical random variables in statistical learning: input data, output
data, noise

What is a probability distribution?
Describes the probability (density) that the random variable will
be equal to a certain value.

The probability distribution can be given by the physics of an
experiment (e.g., throwing dice)
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1. RandomVariables and CommonDistributions : RandomVariables

Random Variables

Important concept: The data generating model
E.g., what is the data generating model for: i) throwing dice, ii)
regression, iii) classification, iv) visual perception?

Problem: On which time scale is a distribution observed?
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1. RandomVariables and CommonDistributions : RandomVariables

Uniform Distribution

All data is equally probable within a bounded region R

p(x) =
1
R

The uniform distribution plays an important role in entropy
methods and information theory.
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1. RandomVariables and CommonDistributions : Discrete Distributions

Discrete Distributions

The random variables take on discrete values
E.g, when throwing a dice, the possible values are (countably
finite set):

xi ∈ {1, 2, 3, 4, 5, 6}

E.g., the number of sand grains at the beach (countably infinite
set):

xi ∈ N
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1. RandomVariables and CommonDistributions : Discrete Distributions

Discrete Distributions

The probabilities sum to 1∑
i

p(xi) = 1

Discrete distributions are particularly important in classification
and decision making

A discrete distribution is described by a probability mass function
(or frequency function), which is a normalized histogram
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1. RandomVariables and CommonDistributions : Discrete Distributions

Bernoulli Distribution

A Bernoulli random variable only takes on two values, for
example 0 and 1

x ∈ {0, 1}
p(x = 1|µ) = µ

Bern(x|µ) = µx(1− µ)1−x

E [x] = µ

var[x] = µ(1− µ)

The only parameter of a Bernoulli distribution is µ, i.e., it is
completely defined using only this parameter
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1. RandomVariables and CommonDistributions : Discrete Distributions

Bernoulli Distribution

Bernoulli distributions are often modeled with sigmoidal
nonlinearites in statistical learning
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1. RandomVariables and CommonDistributions : Discrete Distributions

Binomial Distribution

Binomial variables are a sequence of N repeated Bernoulli
variables

One interpretation is “what is the probability of getting m ∈ N
heads in N trials?”

Bin(m|N, µ) =

(
N
m

)
µm(1− µ)N−m

E[m] =
N∑
m=0

mBin(m|N, µ) = Nµ

var[m] =
N∑
m=0

(m− E[m])2Bin(m|N, µ) = Nµ(1− µ)
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1. RandomVariables and CommonDistributions : Discrete Distributions

Binomial Distribution

The Binomial distribution is completely defined with N - the
number of samples - and µ- the probability that one sample is
equal to 1

Binomial variables are important for example in density
estimation: “What is the probability that k out of n data points
fall into region R?”
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1. RandomVariables and CommonDistributions : Discrete Distributions

Binomial Distribution

Bin(m|10, 0.25)
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1. RandomVariables and CommonDistributions : Discrete Distributions

Multinoulli Distribution

Multinoulli variables, also called Categorical variables in some
literature, are a generalization of binomial variables to multiple
outputs (e.g., multiple classes)

1-of-K coding scheme (also called one-hot encoding)

x = (0, 0, 1, 0, 0, 0)ᵀ

p(x|µ) =
K∏
k=1

µxkk ∀k : µk ≥ 0 and
K∑
k=1

µk = 1

E [x|µ] =
∑
x

p(x|µ)x = (µ1, . . . , µK)ᵀ

∑
x

p(x|µ) =
K∑
k=1

uk = 1
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1. RandomVariables and CommonDistributions : Discrete Distributions

Multinomial Distribution

N independent trials can result in one of K types of outcome

What is the probability that in N trials, the frequency of the K classes is
m1,m2, . . . ,mK

Mult(m1,m2, . . . ,mk|µ,N) =

(
N

m1,m2, . . . ,mK

) K∏
k=1

µmkk

E [mk] = Nµk
var [mk] = Nµk(1− µk)

cov
[
mjmk

]
= −Nµjµk
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1. RandomVariables and CommonDistributions : Discrete Distributions

Multinomial Distribution

The multinomial distribution play an important role in multi-class
classification (N = 1)
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1. RandomVariables and CommonDistributions : Discrete Distributions

Poisson Distribution

The Poisson distribution is the binomial distribution where the number
of trials N goes to infinity, and the probability of success on each trial,
µ, goes to zero, such that Nµ = λ is a constant

p(m|λ) =
λm

m!
e−λ

Where the m is the number of “successes”

For example, Poisson distributions are an important model for t he
firing characteristics of biological neurons. They are also used as an
approximation to binomial variables with small p
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1. RandomVariables and CommonDistributions : Discrete Distributions

Poisson Distribution

Example: What is the probability of firing of a Purkinje neuron in the
cerebellum in a 10ms time interval?

We know that the average firing of these neurons is about 40Hz,
λ = 40Hz× 0.01s

Note that this approximation only work if the number of spike is
low in the given time interval
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1. RandomVariables and CommonDistributions : Continuous Distributions

Continuous Distributions

The random variables take on continuous values

Continuous distributions are discrete distributions where the
number of discrete values goes to infinity, while the probability
of each value goes to zero

A continuous distribution is described by a probability density
function, which integrates to 1∫ +∞

−∞
p(x)dx = 1

Continuous distributions are particularly important in regression
and unsupervised learning

A lot of Machine Learning is centered around how to better
model a density function
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1. RandomVariables and CommonDistributions : Continuous Distributions

Example of a probability density function p(x)

P(a < x < b) =

∫ b

a
p(x)dx
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1. RandomVariables and CommonDistributions : Continuous Distributions

The Gaussian Distribution

p(x) = N (x|µ, σ2) =
1(

2πσ2
)
1/2 exp

{
− 1
2σ2

(x − µ)2
}
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1. RandomVariables and CommonDistributions : Continuous Distributions

Central Limit Theorem

Why are Gaussians SO important?

The distribution of the sum of N i.i.d. (independent and
identically distributed) random variables becomes increasingly
Gaussian as N grows
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1. RandomVariables and CommonDistributions : Continuous Distributions

Central Limit Theorem

Example: N uniform [0,1] random variables

Gaussians are often a good model of data

Working with Gaussians leads to analytic solutions for complex
operations
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1. RandomVariables and CommonDistributions : Continuous Distributions

The Multivariate Gaussian Distribution

p(x) = N (x|µ,Σ) =
1

(2π) D/2
1

|Σ|1/2
exp

{
−1
2

(x− µ)ᵀΣ−1(x− µ)

}
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1. RandomVariables and CommonDistributions : Continuous Distributions

The Multivariate Gaussian Distribution

p(x) = N (x|µ,Σ) =
1

(2π) D/2
1

|Σ|1/2
exp

{
−1
2

(x− µ)ᵀΣ−1(x− µ)

}

To clear some confusion: for a chosen vector x, N (x|µ,Σ) is a
real number with the probability density of x (which can be
greater than 1, only the integral of the probability density
function needs to be 1). The mean µ is just a specific vector
amongst all the possible vectors. The covariance matrix Σ tells
us how two dimensions of a vector are related to each other.

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 26 / 64



1. RandomVariables and CommonDistributions : Continuous Distributions

Geometry of the Multivariate Gaussian

∆2 = (x− µ)ᵀΣ−1(x− µ)

Σ−1 =
D∑
i=1

1
λi
uiu

ᵀ
i

∆2 =
D∑
i=1

y2i
λi

yi = uᵀi (x− µ)

∆2 is the Mahalanobis distance.
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2. Basic Rules of Probability
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2. Basic Rules of Probability

2. Basic Rules of Probability

Joint Distribution
p(x, y)

Marginal Distribution

p(y) =

∫
p(x, y)dx

Conditional Distribution

p(y|x) =
p(x, y)

p(x)
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2. Basic Rules of Probability

2. Basic Rules of Probability

Probabilistic Independence
p(x, y) = p(x)p(y)

Chain Rule of Probabilities

p(x1, . . . , xn) = p(x1|x2, . . . , xn)p(x2, . . . , xn)
= p(x1|x2, . . . , xn)p(x2|x3, . . . , xn) . . . p(xn−1|xn)p(xn)
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2. Basic Rules of Probability

Bayes Rule

p(y|x) =
p(x|y)p(y)

p(x)

posterior ∝ likelihood× prior

posterior: p(y|x)

likelihood: p(x|y)

prior: p(y)

p (x) =
∫
p(x, y)dy =

∫
p(x|y)p(y)dy
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2. Basic Rules of Probability

Partitioned Gaussian Distributions

p(x) = N (x|µ,Σ)

x =

(
xa
xb

)
µ =

(
µa
µb

)
Σ =

(
Σaa Σab
Σba Σbb

)

Λ ≡ Σ−1 Λ =

(
Λaa Λab
Λba Λbb

)
Λ is the precision matrix.
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2. Basic Rules of Probability

Partitioned Conditionals and Marginals
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2. Basic Rules of Probability

Partitioned Conditionals and Marginals

p(xa|xb) = N
(
xa|µa|b,Σa|b

)
Σa|b = Λ−1aa = Σaa −ΣabΣ

−1
bb Σba

= Σa|b {Λaaµ−Λab (xb − µ)}
= µa + ΣabΣ

−1
bb (xb − µb)

p (xa) =

∫
p (xa, xb) dxb

= N (xa|µa,Σaa)

Important result: If the joint distribution p(xa, xb) is Gaussian, then the
conditional distributions p(xa|xb) and p(xb|xa) are also Gaussians.
Moreover, the marginal distributions p(xa) and p(xb) are also Gaussians
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3. Expectations, Variance and Moments
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3. Expectations, Variance and Moments

Expectations

Expectation

Ex∼p(x) [f (x)] = Ex [f ] = E [f ] =

{∑
x p(x)f (x) discrete case∫
p(x)f (x)dx continuous case

Conditional Expectation

Ex∼p(x|y) [f (x)] = Ex [f |y] =

{∑
x p(x|y)f (x) discrete case∫
p(x|y)f (x)dx continuous case
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3. Expectations, Variance and Moments

Expectations

Approximate Expectation

E [f ] =

∫
f (x)p(x)dx ≈ 1

N

N∑
n=1

f (xn)

We sample N points from the distribution p(x) and compute the
function at those points. The probability of computing f (xn) for a
certain point xn is given by the probability of sampling p(xn)

This result is very important! When there is no analytical
solution, we can use this to approximate integrals by sampling!
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3. Expectations, Variance and Moments

Expectations

Example: What is the expectation of the following distribution?
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3. Expectations, Variance and Moments

Expectations

Some rules of expectation
E [ax] = aE [x]

E [x+ y] = E [x] + E [y]

E [xy] = E [x]E [y] only if x and y are statistically independent!

E [
∑
i aixi] =

∑
i aiE [xi]

Expectation of functions
E [g(x)] =

∫
g(x)p(x)dx

In general E [g(x)] 6= g (E [x])
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3. Expectations, Variance and Moments

Variance and Covariance

Variances give a measure of dispersion - the expected spread of
the variable in relation to its mean

var [x] = E
[
(x − E [x])2

]
= E

[
x2
]
− E [x]2
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3. Expectations, Variance and Moments

Variance and Covariance

Covariances give a measure of correlation - how much two
variables change together

cov [x, y] = Ex,y [(x − E [x]) (y − E [y])]

= Ex,y [xy]− Ex[x]Ey [y]

cov [x, y] = Ex,y [(x− E [x]) (y− E [y])ᵀ]

= Ex,y [(x− E [x]) (yᵀ − E [yᵀ])]

= Ex,y [xyᵀ]− Ex[x]Ey [yᵀ]
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3. Expectations, Variance and Moments

Variance and Covariance

Note the very important rule

E [xxᵀ] = Ex[x]Ex [xᵀ] + cov [x, x]

= µµᵀ + Σ
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3. Expectations, Variance and Moments

Moments of Random Variables

Definition of a Moment
mn = E [xn]

Definition of a Central Moment
cmn = E

[
(x − µ)n

]
cm2: variance

cm3: skewness (measure of
asymmetry)

cm4: kurtosis (measure of heavy
tailed-ness and light
tailed-ness)
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3. Expectations, Variance and Moments

Moments of the Multivariate Gaussian

E [x] =
1

(2π)D/2
1

|Σ|1/2

∫
exp

{
−1
2

(x− µ)ᵀΣ−1 (x− µ)

}
xdx

=
1

(2π)D/2
1

|Σ|1/2

∫
exp

{
−1
2
zᵀΣ−1z

}
(z+ µ) dz

Thanks to the asymmetry of z, E [x] = µ
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3. Expectations, Variance and Moments

Moments of the Multivariate Gaussian

E [xxᵀ] = µµᵀ + Σ

cov [x] = cov [x, x] = E [(x− E [x]) (x− E [x])ᵀ] = Σ
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4. Exponential Family

4. Exponential Family

The exponential family are a large class of distributions that are
all analytically appealing, because taking the log of them
decomposes them into simple terms

All distributions from this family are uni-modal

p (x|η) = h (x) g (η) exp {ηᵀu(x)}

where η is the natural parameter and

g (η)

∫
h (x) exp {ηᵀu(x)} dx = 1

hence g can be interpreted as a normalization coefficient
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4. Exponential Family

Exponential Family - Bernoulli Distribution

The Bernoulli Distribution

p (x|µ) = Bern(x|µ) = µx (1− µ)1−x

= exp {x lnµ+ (1− x) ln (1− µ)}

= (1− µ) exp

{
ln

(
µ

1− µ

)
x
}

Comparing with the general form we see that

η = ln

(
µ

1− µ

)
, µ = σ (η) =

1
1+ exp (−η)︸ ︷︷ ︸

Logistic sigmoid
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4. Exponential Family

Exponential Family - Bernoulli Distribution

Hence, the Bernoulli Distribution can be written as

p (x|µ) = σ(−η) exp(ηx)

where

u(x) = x, h(x) = 1, g (η) = 1− σ(η) = σ(−η)

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 49 / 64



4. Exponential Family

Exponential Family - Multinoulli Distribution

The Multinoulli Distribution also belongs to the exponential family

p (x|µ) =
M∏
k=1

µxkk = exp

{
M∑
k=1

xk lnµk

}
= h(x)g(η) exp {ηᵀu(x)}

where

x = (x1, . . . , xM)ᵀ , η = (η1, . . . , ηM)ᵀ , ηk = ln uk
u(x) = x, h(x) = 1, g(η) = 1

Note that the parameters ηk have to be chosen in a way to guarantee
that p (x|µ) is a valid probability distribution. Particularly, they must
satisfy

∑
x

p (x|µ) = 1 =⇒
M∑
k=1

µk = 1
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4. Exponential Family

Exponential Family - Multinoulli Distribution

Let µM = 1−
∑M−1

k=1 µk , which ensures that the distribution is well
defined. We can rewrite p (x|µ) and observe that

ηk = ln

(
µk

1−
∑M−1

j=1 µj

)
, µk =

exp (ηk)

1+
∑M−1

j=1 exp (ηj)︸ ︷︷ ︸
Softmax

Here the parameters ηk can be chosen independently, since

0 ≤ µk ≤ 1,
M−1∑
k=1

µk ≤ 1
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4. Exponential Family

Exponential Family - Multinoulli Distribution

The Multinoulli Distribution can then be written as

p (x|µ) = h (x) g (η) exp {ηᵀu (x)}

where

η = (η1, . . . , ηM−1, 0)ᵀ , u(x) = x, h(x) = 1

g(η) =

(
1+

M−1∑
k=1

exp (ηk)

)−1
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4. Exponential Family

Exponential Family - Gaussian Distribution

The Gaussian Distribution can be rewritten as

p(x|µ, σ2) =
1

(2πσ2)
1/2 exp

{
− 1
2σ2

(x − µ)2
}

=
1

(2πσ2)
1/2 exp

{
− 1
2σ2

x2 +
µ

σ2
x − 1

2σ2
µ2
}

= h(x)g(η) exp {ηᵀu (x)}

where

η =

(
− 1
2σ2

,
µ

σ2

)ᵀ

, u(x) =
(
x2, x

)ᵀ
, h(x) = 1

g(η) =

√
−η1
π

exp

(
η22
4η1

)
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5. Information and Entropy
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5. Information and Entropy

Information Theory - Core Questions

Classical Question: How can we represent information compactly, i.e.,
using as few bits as possible?

Compressing text like with GZIP

Compressing pictures like in JPEG, movies like in MPEG

Compressing sound using MP3

Classical Question: How can we transmit or store data reliably?
ECC memory

Error Correction on CDs

Communication with space probes
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5. Information and Entropy

Information Theory - Core Questions

Machine Learning Questions:
How can we measure complexity?

How can we measure “distances” between probability
distributions?

How can we reconstruct data?

We are not covering all questions here... :)
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5. Information and Entropy

What is Information?

All letters in the English alphabet have a very
different probability pi of occurring

What is the number of bits you need to represent 27
characters? dlog2 27e ≈ d4.75e = 5 bits

How can we measure the information in a single
character? h(pi) = − log2 pi . Events with a low
probability correspond to high information content

So, what is the average information in a character in
an English text?

H(p) = E [h(.)] =
∑

i pih(pi) = −
∑

i pi log2 pi ≈ 4.1
This quantity is called the entropy. On average, with
the right encoding, we can represent each letter with
4.1 bits instead of 4.7
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5. Information and Entropy

Entropy of Distributions

What is the “difference” between these distributions?
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5. Information and Entropy

Kullback-Leibler Divergence

The Kullback-Leibler Divergence - KL Divergence - is a similarity
measure between two distributions, and is defined as

KL (p||q) = −
∫
p(x) ln q(x)dx −

(
−
∫
p(x) ln p(x)dx

)
= −

∫
p(x) ln

q(x)

p(x)
dx

It represents the average additional amount of extra bits required to
specify a symbol x, given that its underlying probability distribution is
the estimated q(x) and not the true one p(x)
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5. Information and Entropy

Kullback-Leibler Divergence

Some properties
It is not a distance: KL (p||q) 6= KL (q||p)

It is non-negative: KL (p||q) ≥ 0

If ∀x p(x) = q(x): KL (p||q) = 0

There are other metrics of similarity, but as we will see further in the
course, the KL Divergence is deeply connected with maximum
likelihood estimation
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6. Wrap-Up

Outline

1. Random Variables and Common Distributions
Random Variables
Discrete Distributions
Continuous Distributions

2. Basic Rules of Probability

3. Expectations, Variance and Moments

4. Exponential Family

5. Information and Entropy

6. Wrap-Up
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6. Wrap-Up

6. Wrap-Up

You know now:
What random variables are (both continuous and discrete)

What probability distributions are

Some basic rules of probability theory

What expectation and variance are

What a Gaussian distribution is and why it is so important

What information and entropy are

How to measure the similarity between two probability
distributions
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6. Wrap-Up

Self-Test Questions

What is a random variable?

What is a distribution?

What is a Binomial distribution?

How does a Poisson distribution relate to Binomial distributions?

What is a Gaussian distribution?

What is an expectation?

What is a joint distribution?

What is a conditional distribution?

What is a distribution with a lot of information?

How to measure the difference between distributions?
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6. Wrap-Up

Homework

Reading Assignment for next lecture
Bishop appendix E
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