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Today’s Objectives

Make you remember Calculus and teach you advanced topics!

Brute Force right through optimization!

Covered Topics:
Unconstrained Optimization

Lagrangian Optimization

Numerical Methods (Gradient Descent)

Go deeper?
Take the Optimization Class of Prof. von Stryk / SIM!

Read Convex Optimization by Boyd & Vandenberghe - http://
www.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf
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1. Motivation

1. Motivation

“All learning problems are essentially optimization problems on data.”

Christopher G. Atkeson, Professor at CMU
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1. Motivation

Robot Arm

You want to predict the torques of a
robot arm

y = Iq̈− µq̇+mlg sin (q)
=

[
q̈ q̇ sin(q)

] [
I −µ mlg

]ᵀ
= φ (x)ᵀ θ

Can we do this with a data set?

D = {(xi, yi) |i = 1 · · · n}

Yes, by minimizing the sum of the
squared error
minθ J (θ,D) =

∑n
i=1 (yi − φ (xi)

ᵀ
θ)
2

Carl Friedrich Gauss
(1777–1855)

Note that this is just one way to measure an error...
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1. Motivation

Will the previous method work?

Sure! But the solution may be faulty, e.g., m = −1kg, . . .

Hence, we need to ensure some extra conditions, and our
problem results in a constrained optimization problem

min
θ

J (θ,D) =
n∑
i=1

(yi − φ (xi)ᵀ θ)2

s.t. g (θ,D) ≥ 0

where g (θ,D) =
[
θ1 −θ2

]ᵀ
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1. Motivation

Motivation

ALL learning problems are optimization problems

In any learning system, we have
1. Parameters θ to enable learning

2. Data set D to learn from

3. A cost function J(θ,D) to measure our performance

4. Some assumptions on the data, with equality and inequality
constraints, f (θ,D) = 0 and g(θ,D) > 0

How can we solve such problems in general?
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1. Motivation

Optimization problems in Machine Learning

Machine Learning tells us how to come up with data-based cost
functions such that optimization can solve them!
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1. Motivation

Most Cost Functions are Useless

Good Machine Learning tells us how to come up with data-based cost
functions such that optimization can solve them efficiently!
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1. Motivation

Good cost functions should be Convex

Ideally, the Cost Functions should be Convex!
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2. Convexity
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2. Convexity : Convex Sets

Convex Sets

A set C ⊆ Rn is convex if ∀x, y ∈ C and ∀α ∈ [0, 1]

αx+ (1− α) y ∈ C
This is the equation of the line segment between x and y. I.e., for a
given α, the point αx+ (1− α) y lies in the line segment between x
and y
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2. Convexity : Convex Sets

Examples of Convex Sets

All of Rn (obvious)

Non-negative orthant: Rn+. Let x � 0, y � 0, clearly
αx+ (1− α) y � 0

Norm balls. Let ‖x‖ ≤ 1, ‖y‖ ≤ 1, then

‖αx+ (1− α) y‖ ≤ ‖αx‖+ ‖(1− α) y‖
= α ‖x‖+ (1− α) ‖y‖
≤ 1
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2. Convexity : Convex Sets

Examples of Convex Sets

Affine subspaces (linear manifold): Ax = b, Ay = b, then

A (αx+ (1− α) y) = αAx+ (1− α)Ay
= αb+ (1− α) b
= b
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2. Convexity : Convex Functions

Convex Functions

A function f : Rn → R is convex if ∀x, y ∈ dom (f ) and ∀α ∈ [0, 1]

f (αx+ (1− α) y) ≤ αf (x) + (1− α) f (y)
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2. Convexity : Convex Functions

Examples of Convex Functions

Linear/affine functions

f (x) = bᵀx+ c

Quadratic functions

f (x) =
1
2
xᵀAx+ bᵀx+ c

where A � 0 (positive semidefinite matrix)
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2. Convexity : Convex Functions

Examples of Convex Functions

Norms (such as l1 and l2)

‖αx+ (1− α) y‖ ≤ ‖αx‖+ ‖(1− α) y‖ = α ‖x‖+ (1− α) ‖y‖

Log-sum-exp (aka softmax, a smooth approximation to the
maximum function often used on machine learning)

f (x) = log

(
n∑
i=1

exp (xi)

)
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2. Convexity : Convex Functions

Important Convex Functions from Classification

SVM loss

f (w) =
[
1− yixᵀi w

]
+

Binary logistic loss

f (w) = log
(
1+ exp

(
−yixᵀi w

))
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2. Convexity : Convex Functions

First-Order Convexity Condition

Suppose f : Rn → R is differentiable. Then f is convex iff
∀x, y ∈ dom (f )

f (y) ≥ f (x) +∇xf (x)ᵀ (y− x)
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2. Convexity : Convex Functions

First-Order Convexity Condition - generally...

The subgradient, or subdifferential set, ∂f (x) of f at x is
∂f (x) = {g : f (y) ≥ f (x) + gᵀ (y− x) ,∀y}

Differentiability is not a requirement!
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2. Convexity : Convex Functions

Second-Order Convexity Condition

Suppose f : Rn → R is twice differentiable. Then f is convex iff
∀x ∈ dom (f )

∇2xf (x) � 0
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2. Convexity : Convex Functions

Ideal Machine Learning Cost Functions

min
θ

J (θ,D) = 0 Convex Function

s.t. f (θ,D) = 0 Affine/Linear Function
g (θ,D) ≥ 0 Convex Set
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2. Convexity : Convex Functions

Why are these conditions nice?

Local solutions are globally optimal!

Fast and well studied optimizers already exist for a long time!
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3. Unconstrained & Constrained Optimization

Unconstrained optimization

Can you solve this problem?

max
θ

J (θ) = 1− θ21 − θ22

With θ∗ =
[
0 0

]ᵀ, J∗ = 1
For any other θ 6= 0, J < 1
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3. Unconstrained & Constrained Optimization

Constrained optimization

Can you solve this problem?

max
θ

J (θ) = 1− θ21 − θ22
s.t. f (θ) = θ1 + θ2 − 1 = 0

First approach: convert the problem to an unconstrained
problem

Second approach: Lagrange Multipliers
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3. Unconstrained & Constrained Optimization

Key Insight

Taylor expansion around a vinicity of θA

f (θA + δθ) ≈ f (θA) + δθᵀ∇f (θA)

With the constraint that the gradient is
normal to the vinicity around θA

δθᵀ∇f (θA) = 0

We have
f (θA + δθ) = f (θA)
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3. Unconstrained & Constrained Optimization

Key Insight

We have to seek a point such that

∇J (θ) + λᵀ∇f (θ) = 0

where λ are the Lagrange
multipliers (δθ)

Hence, we have the Langrangian
function

L (θ,λ) = J (θ) + λᵀf (θ)
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3. Unconstrained & Constrained Optimization

Back to our problem...

Can you solve this problem?

max
θ

J (θ) = 1− θ21 − θ22
s.t. f (θ) = θ1 + θ2 − 1 = 0

We can write the Lagrangian

L (θ,λ) =
(
1− θ21 − θ22

)
+ λ (θ1 + θ2 − 1)
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3. Unconstrained & Constrained Optimization

The optimal solution

L (θ,λ) =
(
1− θ21 − θ22

)
+ λ (θ1 + θ2 − 1)

∇θ1L = −2θ1 + λ = 0

∇θ2L = −2θ2 + λ = 0

∇λL = θ1 + θ2 − 1 = 0

θ∗1 = θ∗2 = 1
2λ

∗ = 1
2
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3. Unconstrained & Constrained Optimization

General Formulation

For a problem written in the form

max
θ

J (θ)

s.t. f (θ) = 0
g (θ) ≥ 0

We have the Lagrangian

L (θ,λ,µ) = J (θ) + λᵀf (θ) + µᵀg (θ)
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3. Unconstrained & Constrained Optimization

Langrangian Dual Formulation

The Primal Problem, with corresponding primal variables θ is

min
θ

J (θ)

s.t. gi (θ) ≤ 0 ∀i = 1, . . . ,m

Where each equality constraint can be converted into two
equivalent inequality constraints (f = 0 ≡ f ≥ 0 ∧ f ≤ 0)

Hence we have the Lagrangian L (θ,λ) = J (θ) + λᵀg (θ)
The Dual Problem1, with corresponding dual variables λ is

max
λ

G (λ) = maxλminθ L (θ,λ)

s.t. λi ≥ 0 ∀i = 1, . . . ,m
1
In words: Add the constraints to the objective function using nonnegative Lagrange multipliers. Then

solve for the primal variables θ that minimize this. The solution gives the primal variables λ as functions of
the Lagrange multipliers. Now maximize this with respect to the dual variables under the derived constraints
on the dual variables (including at least the nonnegativity constraints
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3. Unconstrained & Constrained Optimization

Langrangian Dual Formulation

Why maximization? If λ∗ is the solution of the dual problem,
then G (λ∗) is a lower bound for the primal problem due to two
concepts:

Minimax inequality: for any function of two arguments φ (x, y),
the maximin is less or equal than the minimax

max
y

min
x
φ (x, y) ≤ min

x
max
y
φ (x, y)

Weak duality: the primal values are always greater or equal than
the dual values

min
θ

max
λ≥0
L (θ,λ) ≥ max

λ≥0
min
θ
L (θ,λ)

Check Boyd, Convex Optimization, Ch. 5 for more detailed
information.
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3. Unconstrained & Constrained Optimization

Duality Gap and Strong Duality

The duality gap is the difference between the values of any
primal solutions and any dual solutions. It is always greater than
or equal to 0, due to weak duality.

The duality gap is zero if and only if strong duality holds.
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3. Unconstrained & Constrained Optimization

Langrangian Dual Formulation

Why do we care about the dual formulation?
minθ L (θ,λ) is an unconstrained problem, for a given λ

If it is easy to solve, the overall problem is easy to solve, because
G (λ) is a concave function and thus easy to optimize, even
though J and gi may be nonconvex

In ML, the dual is often more useful than the primal!
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3. Unconstrained & Constrained Optimization

General Recipe to Solve Optimization Problems
with the Langrangian Dual Formulation

We want to solve

min
θ

J (θ)

s.t. gi (θ) ≤ 0 ∀i = 1, . . . ,m
(Assume J and gi are both differentiable functions)

Write down the Lagrangian L (θ,λ) = J (θ) + λᵀg (θ)

Solve the problem minθ L (θ,λ)
Differentiate L w.r.t. θ, set to zero, and write the solution θ∗ as a
function of λ

Replace θ∗ back in the Lagrangian

G (λ) = L (θ∗,λ) = J (θ∗) + λᵀg (θ∗)

and solve the optimization problem maxλ G (λ) , s.t. ∀λi ≥ 0
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4. Numerical Optimization
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4. Numerical Optimization

4. Numerical Optimization

For some problems we do not know how to compute the
solution analytically.

What can we do in that situation?

We solve it numerically using a computer!
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4. Numerical Optimization

Evaluation of Numerical Algorithms

The performance of different optimization algorithms can be
measured by answering the following questions

Does the algorithm converge to the optimal solution?

How many steps does it take to converge?

Is the convergence smooth or bumpy?

Does it work for all types of functions or just on a special type (for
instance convex functions)?

...

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 40 / 65



4. Numerical Optimization

Test Functions

To answer these questions we evaluated the performance in a
set of well-known functions with interesting properties
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J (θ) = (θ1 − 5)2+(θ1 − 5) (θ2 − 5)+(θ2 − 5)2

Rosenbrock Function
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2
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4. Numerical Optimization

Numerical Optimization - Key Ideas

 

quadratic function

Variable θ2

 

Va
ria

bl
e 
θ 1

−10 0 10−5

0

5

10

15

0

50

100

150

200

Find a δθ such that
J(θ + αδθ) < J(θ)

Iterative update rules like

θn+1 = θn + αδθ

Key questions: What is a good direction δθ? What is a good step size α?
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4. Numerical Optimization

Line Search vs Constant Learning Rate

Update rule: αn = argminα J (θn + αδθn)

Optimal step size by Line Search

αn = argminα J (θn + αδθn)
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Other step sizes

αn = const or αn = 1/n
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4. Numerical Optimization

Method 1 - Axial Iteration
(aka coordinate descent)

Alternate minimization over both axes!
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4. Numerical Optimization

Method 2 - Steepest descent

What you usually know as gradient descent

Move in the direction of the gradient ∇J (θ)
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4. Numerical Optimization

Method 2 - Steepest descent

The gradient is perpendicular to the contour lines

After each line minimization the new gradient is always
orthogonal to the previous step direction (true for any line
minimization)

Consequently, the iterations tend to zig-zag down the valley in a
very inefficient manner
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4. Numerical Optimization

Method 2 - Steepest descent

A very basic but cautious word for some source of errors
Remember that the gradient points in the direction of the
maximum

Pay attention to the problem you’re trying to solve!
maxθ J (θ), the update rule becomes θ ← θ+α∇θJ

minθJ (θ), the update rule becomes θ ← θ−α∇θJ

With α > 0
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4. Numerical Optimization

Steepest descent on the Rosenbrock function

The algorithm crawls down the valley...
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4. Numerical Optimization

Method 3 - Newton’s Method

Taylor approximations can approximate functions locally. For
instance:

J (θ + δθ) ≈ J (θ) +∇θJ (θ)
ᵀ δθ +

1
2
δθᵀ∇2θJ (θ) δθ

= c + gᵀδθ +
1
2
δθᵀHδθ

= J̃ (δθ)

where g is the Jacobian and H is the Hessian

We can minimize quadratic functions straightforwardly

δθ = argmin
δθ
J̃ (δθ) = argmin

δθ

[
c + gᵀδθ +

1
2
δθᵀHδθ

]
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4. Numerical Optimization

Method 3 - Newton’s Method

We want to solve

δθ = argmin
δθ
J̃ (δθ) = argmin

δθ

[
c + gᵀδθ +

1
2
δθᵀHδθ

]
This leads to computing

∇δθ J̃ (δθ) = ∇δθ
[
c + gᵀδθ +

1
2
δθᵀHδθ

]
= g+ Hδθ = 0

Which yields the solution

δθ = −H−1g
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4. Numerical Optimization

Method 3 - Newton’s Method

For quadratic J(θ), the optimal solution
is found in one step

θn+1 = θn − H−1 (θn) g (θn) has quadratic
convergence

The solution δθ = −H−1g is guaranteed
to be downhill if H is positive definite

Rather than jumping straight to the
predicted solution at δθ = −H−1g,
better do a line search
θn+1 = θn − αH−1g

For H = I, this is just the steepest
descent
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4. Numerical Optimization

Newton’s Method on Rosenbrock’s Function

The algorithm converges in only 15 iterations compared to the
101 for conjugate gradients (to come later), and 300 for the
regular gradients
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What is the problem with this method? (δθ = −H−1g)
Computing the Hessian matrix at each iteration – this is not
always feasible and often too expensive
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4. Numerical Optimization

Quasi-Newton Method: BFGS

Approximate the Hessian matrix using the following ideas
Hessians change slowly

Hessians are symmetric

Derivatives interpolate

These lead to the optimization problem

min ‖H− Hn‖
s.t. H = Hᵀ

H (θn+1 − θn) = g (θn+1)− g (θn)
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4. Numerical Optimization

Quasi-Newton Method: BFGS

Thus the Hessian can be computed iteratively

H−1
n+1 =

(
I−

sky
ᵀ
k

sᵀkyk

)
H−1
n

(
I−

sky
ᵀ
k

sᵀkyk

)ᵀ

+
sky

ᵀ
k

sᵀkyk

where yn = g (θn+1)− g (θn) and sn = θn+1 − θn
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4. Numerical Optimization

Quasi-Newton Method: BFGS

First step can be fully off due to initialization but slight errors
can be helpful all the way

For reasonable dimensions BFGS is preferred
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4. Numerical Optimization

Method 4 - Conjugate Gradients (a sketch)

The method of conjugate gradients chooses successive descent
directions δθn such that it is guaranteed to reach the minimum
in a finite number of steps

Each δθn is chosen to be conjugate to all previous search
directions with respect to the Hessian H

δθTnHδθj = 0 for 0 ≤ j < n

The resulting search directions are mutually linearly independent

Remarkably, δθn can be chosen using only the knowledge of
δθn−1, ∇J (θn) and ∇J (θn−1)

δθn = ∇θJ (θn) +
∇θJ (θn)

ᵀ∇θJ (θn)
∇θJ (θn−1)

ᵀ∇θJ (θn−1)
δθn−1
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4. Numerical Optimization

Method 4 - Conjugate Gradients

It uses first derivatives only, but avoids “undoing” previous work

An N-dimensional quadratic form can be minimized in at most N
conjugate descent steps
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4. Numerical Optimization

Method 4 - Conjugate Gradients

3 different starting points

The minimum is reached in exactly 2 steps
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4. Numerical Optimization

Conjugate Gradients on Rosenbrock’s Function

The algorithm converges in 101
iterations

Far superior to steepest descent but
slower than Newton’s methods

However, it avoids computing the
Hessian which can be more
expensive for more dimensions
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4. Numerical Optimization

Conjugate Gradients vs BFGS

BFGS is more costly than CG per iteration

BFGS in converges in fewer steps than CG

BFGS has less of a tendency to get "stuck"

BFGS requires algorithmic “hacks” to achieve significant descent
for each iteration

Which one is better depends on your problem!
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4. Numerical Optimization

Performance Issues

Number of iterations required

Cost per iteration

Memory footprint

Region of convergence

Is the cost function noisy?
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5. Wrap-Up

Outline

1. Motivation

2. Convexity
Convex Sets
Convex Functions

3. Unconstrained & Constrained Optimization

4. Numerical Optimization

5. Wrap-Up
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5. Wrap-Up

5. Wrap-Up

You know now:
How machine learning relates to optimization

What a good cost function looks like

What convex sets and functions are

Why convex functions are important in machine learning

What unconstrained and constrained optimization are

What the Lagrangian is

Different numerical optimization methods
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5. Wrap-Up

Self-Test Questions

Why is optimization important for machine learning?

What do well-formulated learning problems look like?

What is a convex set and what is a convex function?

How do I find the maximum of a vector-valued function?

How to deal with constrained optimization problems?

How to solve such problems numerically?

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 64 / 65



5. Wrap-Up

Homework

Reading Assignment for next lecture
Bishop ch 1.5

Murphy ch. 5.7
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