

Statistical Machine Learning

Lecture 05: Bayesian Decision Theory

Kristian Kersting TU Darmstadt

Summer Term 2020

Today's Objectives

- Make you understand how to do an optimal decision!
- Covered Topics:
 - Bayesian Optimal Decisions
 - Classification from a Bayesian point of view
 - Risk-based Classification

1. Bayesian Decision Theory

2. Risk Minimization

3. Wrap-Up

Outline

1. Bayesian Decision Theory

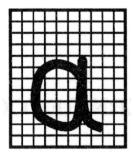
2. Risk Minimization

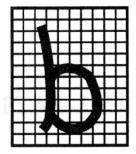
3. Wrap-Up

Statistical Methods

- Statistical methods in machine learning all have in common that they assume that the process that "generates" the data is governed by the rules of probability
- The data is understood to be a set of random samples from some underlying probability distribution
- Today will be all about probabilities. But in future lectures, the use of probability will sometimes be much less explicit
- Nonetheless, the basic assumption about how the data is generated is always there, even if you don't see a single probability distribution anywhere

Character Recognition

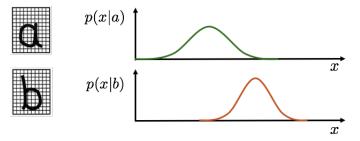




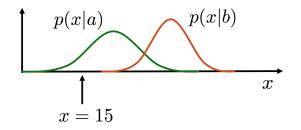
Goal: classify a new letter so that the probability of a wrong classification is minimized

Class conditional probabilities

- Probability of making an observation x knowing that it comes from some class C_k
- Here x is often a feature vector, which measures/describes properties of the data. E.g.: number of black pixels, height-width ratio, ...



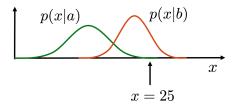
Example



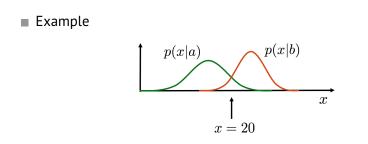
How do we decide which class the data point belongs to?

Here, we should decide for class a

Example



- How do we decide which class the data point belongs to?
- Since $p(\mathbf{x}|a)$ is a lot smaller than $p(\mathbf{x}|b)$ we should now decide for class **b**



How do we decide which class the data point belongs to?

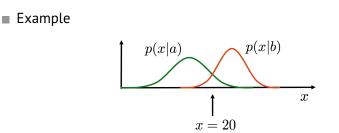
Class priors

- The *a priori* probability of a data point belonging to a particular class is called the class prior
- Example:
 - abaaababaaaabbaaaaaa
- What are p(a) and p(b)?

$$C_1 = a \quad p(C_1) = 0.75$$

 $C_2 = b \quad p(C_2) = 0.25$
 $\sum_k p(C_k) = 1$

Back to our problem...



How do we decide which class the data point belongs to?

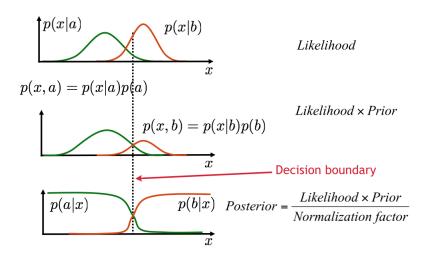
If p(a) = 0.75 and p(b) = 0.25, we should decide for class **a**

- Bayes Theorem lets us formalize the previous intuitive decision
- We want to find the a-posteriori probability (posterior) of the class *C_k* given the observation (feature) **x**

$$p(C_{k}|\mathbf{x}) = \frac{p(\mathbf{x}|C_{k})p(C_{k})}{p(\mathbf{x})} = \frac{p(\mathbf{x}|C_{k})p(C_{k})}{\sum_{j} p(\mathbf{x}|C_{j})p(C_{j})}$$

- class prior: $p(C_k)$
- **c**lass-conditional probability (likelihood): $p(\mathbf{x}|C_k)$
- class posterior: $p(C_k | \mathbf{x})$
- normalization term: $p(\mathbf{x})$

1. Bayesian Decision Theory



- Why is it called this way?
 - To some extent, because it involves applying Bayes' rule
 - But this is not the whole story...
 - The real reason is that it is built on so-called Bayesian probabilities

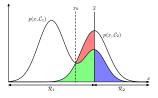
Bayesian Probabilities

- Probability is not just interpreted as a frequency of a certain event happening
- Rather, it is seen as a degree of belief in an outcome
- Only this allows us to assert a prior belief in a data point coming from a certain class
- Even though this might seem easy to accept to you now, this interpretation was quite contentious in statistics for a long time

17 / 36

Bayesian Decision Theory

Goal: Minimize the misclassification rate (the probability of classifying wrongly)



$$p(\text{error}) = p(x \in R_1, C_2) + p(x \in R_2, C_1)$$

= $\int_{R_1} p(x, C_2) dx + \int_{R_2} p(x, C_1) dx$
= $\int_{R_1} p(x|C_2) p(C_2) dx + \int_{R_2} p(x|C_1) p(C_1) dx$

K. Kersting based on Slides from J. Peters • Statistical Machine Learning • Summer Term 2020

Bayesian Decision Theory

Decision rule: decide C_1 if $p(C_1|x) > p(C_2|x)$

Equivalent to

$$\frac{p(x|C_1)p(C_1)}{p(x)} > \frac{p(x|C_2)p(C_2)}{p(x)}$$

$$p(x|C_1)p(C_1) > p(x|C_2)p(C_2)$$

$$\frac{p(x|C_1)}{p(x|C_2)} > \frac{p(C_2)}{p(C_1)}$$

A classifier obeying this rule is called a Bayes Optimal Classifier

1. Bayesian Decision Theory

Bayesian Decision Theory

$$\frac{p(x|C_1)}{p(x|C_2)} > \frac{p(C_2)}{p(C_1)}$$

Special cases

- If $p(x|C_1) = p(x|C_2)$, then use $p(C_1) > p(C_2)$
- If $p(C_1) = p(C_2)$, then use $p(x|C_1) > p(x|C_2)$

More than two Classes

Generalization to more than 2 classes:

■ Decide for class *k* iff it has the highest a-posteriori probability $p(C_k|x) > p(C_j|x) \quad \forall j \neq k$

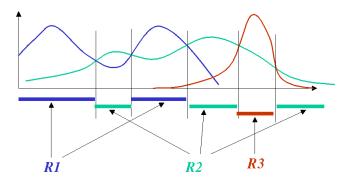
Equivalent to

$$p(x|C_k) p(C_k) > p(x|C_j) p(C_j) \quad \forall j \neq k$$

$$\frac{p(x|C_k)}{p(x|C_j)} > \frac{p(C_j)}{p(C_k)} \quad \forall j \neq k$$

More than two Classes

Decision regions: R_1, R_2, R_3, \ldots



High Dimensional Features

- So far we have only considered one-dimensional features, i.e., $x \in \mathbb{R}$
- We can use more features and generalize to an arbitrary *D*-dimensional feature space, i.e., $\mathbf{x} \in \mathbb{R}^{D}$
 - For instance, in the salmon vs. sea-bass classification task

$$\boldsymbol{x} = \begin{bmatrix} x_1 & x_2 \end{bmatrix}^{\mathsf{T}} \in \mathbb{R}^2$$

• Where x_1 is the width, and x_2 is the lightness

The decision boundary we devised still applies to $\mathbf{x} \in \mathbb{R}^{D}$. We just need to use multivariate class-conditional densities $p(\mathbf{x}|C_k)$

Dummy Classes

- There are also applications, where it may be advantageous to have a dummy class denoted "don't know" or "don't care"
 - Also called a reject option
- Not a common case though and we will not cover this in this class

Outline

1. Bayesian Decision Theory

2. Risk Minimization

3. Wrap-Up

2. Risk Minimization

- So far, we have tried to minimize the misclassification rate
- There are many cases when not every misclassification is equally bad
- Smoke detector
 - If there is a fire, we need to be very sure that we classify it as such
 - If there is no fire, it is ok to occasionally have a false alarm
- Medical diagnosis
 - If the patient is sick, we need to be very sure that we report them as sick
 - If they are healthy, it is ok to classify them as sick and order further testing that may help clarifying this up

Key idea: we have to construct a loss function in a way that expresses what we want to achieve

```
loss (decision = healthy|patient = sick) >>
loss (decision = sick|patient = healthy)
```

- Possible decisions: α_i
- True classes: *C_j*
- Loss function: $\lambda \left(\alpha_i | C_j \right)$
- Expected loss of making a decision α_i $R(\alpha_i|x) = \mathbb{E}_{C_k \sim p(C_k|x)} [\lambda(\alpha_i|C_k)] = \sum_i \lambda(\alpha_i|C_j) p(C_j|x)$

Risk Minimization

- The expected loss of a decision is also called the risk of making a decision
- Instead of minimizing the Misclassification rate

$$p(\text{error}) = p(x \in R_1, C_2) + p(x \in R_2, C_1)$$

= $\int_{R_1} p(x, C_2) dx + \int_{R_2} p(x, C_1) dx$
= $\int_{R_1} p(x|C_2) p(C_2) dx + \int_{R_2} p(x|C_1) p(C_1) dx$

We minimize the Overall Risk

$$R(\alpha_i|\mathbf{x}) = \mathbb{E}_{C_k \sim p(C_k|\mathbf{x})} \left[\lambda(\alpha_i|C_k)\right] = \sum_j \lambda(\alpha_i|C_j) p(C_j|\mathbf{x})$$

Risk Minimization

- 2 classes: *C*₁, *C*₂
- **2** decisions: α_1, α_2
- Loss function: $\lambda \left(\alpha_i | C_j \right) = \lambda_{ij}$
- Risk of both decisions

$$R(\alpha_1|x) = \lambda_{11}p(C_1|x) + \lambda_{12}p(C_2|x)$$
$$R(\alpha_2|x) = \lambda_{21}p(C_1|x) + \lambda_{22}p(C_2|x)$$

■ Goal: Create a decision rule so that overall risk is minimized
 ■ Decide α₁ if R (α₂|x) > R (α₁|x)

Risk Minimization

$$\begin{array}{rcl} R(\alpha_{2}|x) &> & R(\alpha_{1}|x) \\ \lambda_{21}p(\mathcal{C}_{1}|x) + \lambda_{22}p(\mathcal{C}_{2}|x) &> & \lambda_{11}p(\mathcal{C}_{1}|x) + \lambda_{12}p(\mathcal{C}_{2}|x) \\ & (\lambda_{21} - \lambda_{11})p(\mathcal{C}_{1}|x) &> & (\lambda_{12} - \lambda_{22})p(\mathcal{C}_{2}|x) \end{array}$$

$$\begin{array}{ll} \frac{\lambda_{21} - \lambda_{11}}{\lambda_{12} - \lambda_{22}} &> & \frac{p(C_2|x)}{p(C_1|x)} = \frac{p(x|C_2)p(C_2)}{p(x|C_1)p(C_1)} \\ & \frac{p(x|C_1)}{p(x|C_2)} &> & \frac{\lambda_{12} - \lambda_{22}}{\lambda_{21} - \lambda_{11}} \frac{p(C_2)}{p(C_1)} \end{array}$$

■ It is reasonable to assume that the loss of a correct decision is smaller than that of a wrong decision: $\lambda_{ij} > \lambda_{ii}$ $\forall j \neq i$

K. Kersting based on Slides from J. Peters • Statistical Machine Learning • Summer Term 2020 29 / 36

2. Risk Minimization

Risk Minimization 0-1 Loss

$$\frac{p(x|C_1)}{p(x|C_2)} > \frac{\lambda_{12} - \lambda_{22}}{\lambda_{21} - \lambda_{11}} \frac{p(C_2)}{p(C_1)}$$

Decide α_1 if

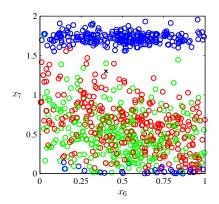
$$\lambda \left(\alpha_i | \mathcal{C}_j \right) = \begin{cases} 0 & i = j \\ 1 & i \neq j \end{cases}$$
$$\frac{p(x|\mathcal{C}_1)}{p(x|\mathcal{C}_2)} > \frac{p(\mathcal{C}_2)}{p(\mathcal{C}_1)}$$

The 0-1 loss leads to the same decision rule that minimized the misclassification rate

2. Risk Minimization

- Are we done with classification?
 - We have decision rules for simple and general loss functions
 - Even "Bayes optimal"
 - We can deal with 2 or more classes
 - We can deal with high dimensional feature vectors
 - We can incorporate prior knowledge on the class distribution
- What are we going to do the rest of the semester? Where is the catch?
- Where do we get the probability distributions from?

Training Data



How do we get the probability distributions from this so that we can classify with them?

K. Kersting based on Slides from J. Peters • Statistical Machine Learning • Summer Term 2020 32 / 36

Outline

1. Bayesian Decision Theory

2. Risk Minimization

3. Wrap-Up

3. Wrap-Up

You know now:

- What class conditional probabilities, class priors and class posteriors are
- What Bayesian Decision Theory is
- How to use Bayes Theorem for classification
- What misclassification rate is
- What a Bayes Optimal Classifier is
- How to generalize decision to more than 2 classes
- What risk is, and how it relates to misclassification

Self-Test Questions

- How can we decide on classifying a query based on simple and general loss functions?
- What does "Bayes optimal" mean?
- How to deal with 2 or more classes?
- How to deal with high dimensional feature vectors?
- How to incorporate prior knowledge on the class distribution?
- What are the equations for misclassification rate and risk

Reading Assignment for next lecture

 Bishop ch. 2 (Probability Distributions), 9 (Mixture Models and EM)