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Today’s Objectives

Make you understand how to do find p (x)

Covered Topics
Density Estimation

Maximum Likelihood Estimation

Non-Parametric Methods

Mixture Models

Expectation Maximization
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1. Probability Density

Training Data
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How do we get the probability distributions from this so that we
can classify with them?
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1. Probability Density

Probability Density Estimation

So far we have seen:
Bayes optimal classification, based on probability distributions
p(x | Ck)p(Ck)

The prior p(Ck) is easy to deal with. We can “just count” the
number of occurrences of each class in the training data

We need to estimate (learn) the class-conditional probability
density p(x | Ck)

Supervised training: we know the input data points and their true
labels (classes)

Estimate the density separately for each class Ck

“Abbreviation”: p(x) = p(x | Ck)
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1. Probability Density

Probability Density Estimation

Training data

x1, x2, x3, . . .

Estimation

p(x)

Methods
Parametric model

Non-parametric model

Mixture models
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2. Parametric models
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2. Parametric models

2. Parametric models

Simple case: Gaussian Distribution

p (x|µ, σ) =
1√
2πσ2

exp

{
−(x − µ)2

2σ2

}

Is governed by two parameters: mean and variance. That is, if we
know these parameters we can fully describe p(x)
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2. Parametric models

2. Parametric models

Notation for parametric density models

x ∼ p(x | θ)

For the Gaussian distribution

θ = (µ, σ)

x ∼ p
(
x
∣∣∣µ, σ)
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2. Parametric models : Maximum Likelihood Method

2. Parametric models

Learning means to estimate the parameters θ given the training
data X = {x1, x2, . . .}

Likelihood of θ is defined as the probability that the data X was
generated from the probability density function with parameters
θ

L (θ) = p (X | θ)
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2. Parametric models : Maximum Likelihood Method

Maximum Likelihood Method

Consider a set of points X = {x1, . . . , xN}

Computing the likelihood
Of a single datum? p (xn|θ)

Of all data?

Assumption: the data is i.i.d. (independent and identically
distributed)

The random variables x1 and x2 are independent if

P (x1 ≤ α, x2 ≤ β) = P (x1 ≤ α) P (x2 ≤ β) ∀α, β ∈ R

The random variables x1 and x2 are identically distributed if

P (x1 ≤ α) = P (x2 ≤ α) ∀α ∈ R
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2. Parametric models : Maximum Likelihood Method

Maximum Likelihood Method

Likelihood

L (θ) = p (X | θ) = p
(
x1, . . . , xN

∣∣∣ θ)
(using the i.i.d. assumption)
= p (x1 | θ) · . . . · p (xn | θ)

=
N∏
n=1

p (xn | θ)
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2. Parametric models : Maximum Likelihood Method

Maximum log-Likelihood Method

Maximize the (log-)likelihood w.r.t. θ

log L (θ) = log p (X | θ) = log
N∏
n=1

p (xn | θ) =
N∑
n=1

log p (xn | θ)
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2. Parametric models : Maximum Likelihood Method

Maximum Likelihood Method - Gaussian

Maximum likelihood estimation of a Gaussian

µ̂, σ̂ = arg max
µ,σ

log L (θ) = log p (X | θ) =
N∑
n=1

log p
(
xn
∣∣∣µ, σ)

Take the partial derivatives and set them to zero
∂L
∂µ

= 0,
∂L
∂σ

= 0

This leads to a closed form solution

µ̂ =
1
N

N∑
n=1

xn

σ̂2 =
1
N

N∑
n=1

(xn − µ̂)2
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2. Parametric models : Maximum Likelihood Method

Maximum Likelihood Method - Gaussian
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2. Parametric models : Maximum Likelihood Method

Likelihood

L (θ) = p (X | θ) =
N∏
n=1

p (xn | θ)
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2. Parametric models : Maximum Likelihood Method

Degenerate case

If N = 1, X = {x1}, the resulting Gaussian looks like
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2. Parametric models : Maximum Likelihood Method

Degenerate case

What can we do to still get a useful estimate?

We can put a prior on the mean!
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2. Parametric models : Maximum Likelihood Method

Bayesian Estimation

Bayesian estimation / learning of parametric distributions,
assumes that the parameters are not fixed, but are random
variables too

This allows us to use prior knowledge about the parameters

How do we achieve that?
What do we want? A density model for x, p(x)

What do we have? Data X

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 20 / 77



2. Parametric models : Maximum Likelihood Method

Bayesian Estimation

Formalize this as a conditional probability p
(
x
∣∣∣X)

p
(
x
∣∣∣X) =

∫
p
(
x, θ

∣∣∣X) dθ
p
(
x, θ

∣∣∣X) = p
(
x
∣∣∣ θ,X) p(θ ∣∣∣X)

p(x) can be fully determined with the parameters θ, i.e., θ is a
sufficient statistic

Hence, we have p
(
x
∣∣∣ θ,X) = p

(
x
∣∣∣ θ)

p
(
x
∣∣∣X) =

∫
p
(
x
∣∣∣ θ) p(θ ∣∣∣X) dθ

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 21 / 77



2. Parametric models : Maximum Likelihood Method

Bayesian Estimation

p
(
x
∣∣∣X) =

∫
p
(
x
∣∣∣ θ) p(θ ∣∣∣X) dθ

p
(
θ
∣∣∣X) =

p
(
X
∣∣∣ θ) p (θ)

p (X)
= L (θ)

p (θ)

p (X)

p (X) =

∫
p
(
X
∣∣∣ θ) p (θ) dθ =

∫
L (θ) p (θ) dθ

p
(
x
∣∣∣X) =

1
p (X)

∫
p
(
x
∣∣∣ θ) L (θ) p (θ) dθ
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2. Parametric models : Maximum Likelihood Method

Bayesian Estimation

p
(
x
∣∣∣X) =

∫
p
(
x
∣∣∣ θ) p(θ ∣∣∣X) dθ

The probability p
(
θ
∣∣∣X) makes it explicit how the parameter

estimation depends on the training data

If p
(
θ
∣∣∣X) is small in most places, but large for a single θ̂ then

we can approximate

p
(
x
∣∣∣X) ≈ p(x ∣∣∣ θ̂)

Sometimes referred to as the Bayes point

The more uncertain we are about estimating θ̂, the more we
average
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2. Parametric models : Maximum Likelihood Method

Bayesian Estimation

Problem: In general, it is intractable to integrate out the
parameters θ (or only possible to do so numerically)

Example with closed form solution
Gaussian data distribution, the variance is known and fixed

We estimate the distribution of the mean

p
(
µ
∣∣∣X) =

p
(
X
∣∣∣µ) p (µ)

p (X)

With prior

p (µ) = N
(
µ0, σ

2
0

)

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 24 / 77



2. Parametric models : Maximum Likelihood Method

Bayesian Estimation

Sample mean

x̄ =
1
N

N∑
n=1

xn

Bayesian estimation

p
(
µ
∣∣∣X) ∼ N (µN, σ2N)

µN =
Nσ20 x̄ + σ2µ0

Nσ20 + σ2
,

1
σ2N

=
N
σ2

+
1
σ20

Check what happens when N grows to infinity...
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2. Parametric models : Maximum Likelihood Method

Conjugate Priors

Conjugate Priors are prior distributions for the parameters that
do not “change” the type of the parametric model

For example, as we saw that a Gaussian prior on the mean is
conjugate to the Gaussian model. This works here because...

The product of two Gaussians is a Gaussian

The marginal of a Gaussian is a Gaussian

In general, it is not as easy!

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 26 / 77



3. Non-Parametric Models

Outline

1. Probability Density

2. Parametric models
Maximum Likelihood Method

3. Non-Parametric Models
Histograms
Kernel Density Estimation
K-nearest Neighbors

4. Mixture models

5. Wrap-Up

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 27 / 77



3. Non-Parametric Models

3. Non-Parametric Models

Why use Non-parametric representations?
Often we do not know what functional form the class-conditional
density takes (or we do not know what class of function we need)

Probability density is estimated directly from the data (i.e.
without an explicit parametric model)

Histograms

Kernel density estimation (Parzen windows)

K-nearest neighbors
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3. Non-Parametric Models : Histograms

Histograms

Discretize the feature space into bins

Not smooth enough

About right

Too smooth
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3. Non-Parametric Models : Histograms

Histograms

Properties
They are very general, because in the infinite data limit any
probability density can be approximated arbitrarily well

At the same time it is a Brute-force method

Problems
High-dimensional feature spaces

Exponential increase in the number of bins

Hence requires exponentially much data

Commonly known as the Curse of dimensionality

How to choose the size of the bins?
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3. Non-Parametric Models : Histograms

Curse of Dimensionality

For histograms

We will see that it is a general issue that we have to keep in mind
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3. Non-Parametric Models : Histograms

More formally

Data point x is sampled from probability density p (x)

Probability that x falls in region R

P (x ∈ R) =

∫
R
p (x) dx

If R is sufficiently small, with volume V , then p (x) is almost constant

P (x ∈ R) =

∫
R
p (x) dx ≈ p (x) V

If R is sufficiently large

P (x ∈ R) =
K
N

=⇒ p (x) ≈ K
NV

where N is the number of total points and K is the number of points
falling in the region R

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 32 / 77



3. Non-Parametric Models : Histograms

More formally

p (x) ≈ K
NV

Kernel density estimation - Fix V and determine K
Example: determine the number of data points K in a fixed
hypercube

K-nearest neighbor - Fix K and determine V
Example: increase the size of a sphere until K data points fall into
the sphere
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3. Non-Parametric Models : Kernel Density Estimation

Parzen Window

Hypercubes in d dimensions with edge length h

H (u) =

{
1
∣∣uj∣∣ ≤ h

2 , j = 1, . . . , d
0 otherwise

V =

∫
H (u) du = hd

K (x) =
N∑
n=1

H
(
x− x(n)

)

p (x) ≈ K (x)

NV
=

1
Nhd

N∑
n=1

H
(
x− x(n)

)
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3. Non-Parametric Models : Kernel Density Estimation

Gaussian Kernel

H (u) =
1(√
2πh2

)d exp

{
−‖u‖

2

2h2

}

V =

∫
H (u) du = 1

K (x) =
N∑
n=1

H
(
x− x(n)

)

p (x) ≈ K (x)

NV
=

1

N
(√
2πh2

)d N∑
n=1

exp

{
−
∥∥x− x(n)∥∥2

2h2

}
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3. Non-Parametric Models : Kernel Density Estimation

General formulation - arbitrary kernel

k (u) ≥ 0,
∫
k (u) du = 1

V = hd

K (x) =
N∑
n=1

k

(∥∥x− x(n)∥∥
h

)

p (x) ≈ K (x)

NV
=

1
Nhd

N∑
n=1

k

(∥∥x− x(n)∥∥
h

)
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3. Non-Parametric Models : Kernel Density Estimation

Common Kernels

Gaussian Kernel

k (u) =
1√
2π

exp

{
−1
2
u2
}

Problem: kernel has infinite support

Requires a lot of computation

Parzen window

k (u) =

{
1 |u| ≤ 1/2
0 otherwise

Not very smooth results
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3. Non-Parametric Models : Kernel Density Estimation

Common Kernels

Epanechnikov kernel

k (u) = max

{
0,
3
4

(1− u)2
}

Smoother, but finite support

Problem with kernel methods: We have to select the kernel
bandwidth h appropriately
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3. Non-Parametric Models : Kernel Density Estimation

Gaussian KDE Example

Not smooth enough

About right

Too smooth
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3. Non-Parametric Models : K-nearest Neighbors

Again to our definition

p (x) ≈ K
NV

Kernel density estimation - Fix V and determine K
Example: determine the number of data points K in a fixed
hypercube

K-nearest neighbor - Fix K and determine V
Example: increase the size of a sphere until K data points fall into
the sphere
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3. Non-Parametric Models : K-nearest Neighbors

K-Nearest Neighbors (kNN)

Not smooth enough

About right

Too smooth

Note: Blue rescaled for visualization
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3. Non-Parametric Models : K-nearest Neighbors

K-Nearest Neighbors (kNN)

Bayesian classification

P
(
Cj
∣∣∣ x) =

P
(
x
∣∣∣ Cj) P (Cj)
P (x)

k-Nearest Neighbors classification
Assume we have a dataset of N points, where Nj is the number of
data points in class Cj and

∑
j Nj = N. To classify a point x we

draw a sphere centered in x that contains K points (from any
classes). Assume the sphere has volume V and contains Kj points
of class Cj

P (x) ≈ K
NV

, P
(
x
∣∣∣ Cj) ≈ Kj

NjV
, P

(
Cj
)
≈
Nj
N

P
(
Cj
∣∣∣ x) ≈ Kj

NjV
Nj
N
NV
K

=
Kj
K
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3. Non-Parametric Models : K-nearest Neighbors

Bias-Variance Problem

Nonparametric probability density estimation
Histograms: Size of the bins?

too large: too smooth

too small: not smooth enough

Kernel density estimation: Kernel bandwidth?
h too large: too smooth

h too small: not smooth enough

K-nearest neighbor: Number of neighbors?
K too large: too smooth

K too small: not smooth enough

A general problem of many density estimation approaches,
including parametric and mixture models
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4. Mixture models

Outline

1. Probability Density

2. Parametric models
Maximum Likelihood Method

3. Non-Parametric Models
Histograms
Kernel Density Estimation
K-nearest Neighbors

4. Mixture models

5. Wrap-Up

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 44 / 77



4. Mixture models

4. Mixture models

Parametric models
Gaussian, Neural
Networks, ...

Good analytic properties

Simple

Small memory
requirements

Fast

Nonparametric models
Kernel Density Estimation,
k-Nearest Neighbors, ...

General

Large memory
requirements

Slow

Mixture models are a mix of parametric and nonparametric models
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4. Mixture models

Mixture of Gaussians (MoG)

Sum of individual Gaussian distributions
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4. Mixture models

Mixture of Gaussians

Sum of individual Gaussian distributions

In the limit (i.e. with many mixture components) this can
approximate every (smooth) density

p (x) =
M∑
j=1

p
(
x
∣∣∣ j) p (j)
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4. Mixture models

Mixture of Gaussians

p (x) =
M∑
j=1

p
(
x
∣∣∣ j) p (j)

p
(
x
∣∣∣ j) = N

(
x
∣∣∣µj, σj) =

1√
2πσ2j

exp

{
−
(
x − µj

)2
2σ2j

}

p (j) = πj with 0 ≤ πj ≤ 1,
M∑
j=1

πj = 1

Remarks
The mixture density integrates to 1:

∫
p (x) dx = 1

The mixture parameters are: θ = {µ1, σ1, π1, . . . , µM, σM, πM}
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4. Mixture models

Mixture of Gaussians - MLE

Maximum (log-)Likelihood Estimation
Dataset with N i.i.d. points {x1, . . . , xN}

L = log L (θ) =
N∑
n=1

log p
(
xn
∣∣∣ θ)

∂L
∂µj

= 0

µj =

∑N
n=1 p

(
j
∣∣∣ xn) xn∑N

n=1 p
(
j
∣∣∣ xn)

What is the problem with this approach?

Circular dependency - No analytical solution!
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4. Mixture models

Mixture of Gaussians - MLE Gradient Ascent

Maximum (log-)Likelihood Estimation
Dataset with N i.d.d. points {x1, . . . , xN}

L = log L (θ) =
N∑
n=1

log p
(
xn
∣∣∣ θ)

∂L
∂µj

= 0

Gradient ascent
Complex gradient (nonlinear, circular dependencies)

Optimization of one Gaussian component depends on all other
components
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4. Mixture models

Mixture of Gaussians - Different strategy

Unobserved := hidden or latent variables (j|x)
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4. Mixture models

Mixture of Gaussians - Different strategy

Suppose we knew the observed and unobserved dataset (also
called the complete dataset)

Then we can compute the maximum likelihood solution of
components 1 and 2

µ1 =

∑N
n=1 p

(
1
∣∣∣ xn) xn∑N

n=1 p
(
1
∣∣∣ xn) µ2 =

∑N
n=1 p

(
2
∣∣∣ xn) xn∑N

n=1 p
(
2
∣∣∣ xn)
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4. Mixture models

Mixture of Gaussians - Different strategy

Suppose we knew the distributions

We can infer the unobserved data using Bayes Decision Rule.
Namely we decide 1 if

p
(
j = 1

∣∣∣ x) > p(j = 2
∣∣∣ x)
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4. Mixture models

Mixture of Gaussians - Chicken and Egg
problem

We have big problem at hand... we neither know the distribution
nor the unobserved data!

To break this loop, we need some estimation of the unobserved
data j

Temporary solution: Clustering (to be replaced soon)
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4. Mixture models

Estimation using Clustering

Clustering with hard assignments

Somehow assign mixture
labels to each data point

Estimate the mixture
component only from its
data
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4. Mixture models

Mixture of Gaussians

Suppose we had a guess about the distribution, but did not know
the unobserved data

Compute the probability for each mixture component:

p
(
j = 1

∣∣∣ x) =
p
(
x
∣∣∣ 1) p (1)
p (x)

=
p
(
x
∣∣∣ 1)π1∑M

j=1 p
(
x
∣∣∣ j)πj

p
(
j = 2

∣∣∣ x) =
p
(
x
∣∣∣ 2) p (2)
p (x)

=
p
(
x
∣∣∣ 2)π2∑M

j=1 p
(
x
∣∣∣ j)πj
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4. Mixture models

Expectation Maximization - Clustering

Clustering with soft assignments

Expectation-step of the EM-algorithm (shortly)

We can determine the means by maximum likelihood estimation

µj =

∑N
n=1 p

(
j
∣∣∣ xn) xn∑N

n=1 p
(
j
∣∣∣ xn)
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4. Mixture models

Expectation Maximization Algorithm

Algorithm
Initialize with (random) means: µ1, µ2, . . . , µM

While stop-condition is not met
E-step: Compute the posterior distribution for each mixture
component and for all data points

p
(
j
∣∣∣ xn)

M-step: Compute the new means as the weighted means of all
data points

µj =

∑N
n=1 p

(
j
∣∣∣ xn) xn∑N

n=1 p
(
j
∣∣∣ xn)
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4. Mixture models

Expectation Maximization
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4. Mixture models

Expectation Maximization (EM) Algorithm

Expectation-Maximization (EM) Algorithm
Method for performing maximum likelihood estimation, even
when the data is incomplete (i.e. we only have access to observed
variables)

Idea: if we have unknown values in our estimation problem
(so-called hidden variables) we can use EM

Assume:
Observed (incomplete) data: X = {x1, . . . , xN}

Unobserved (hidden) data: Y = {y1, . . . , yN}

In case of Gaussian mixtures:
Association of every data point to one of the mixture components
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4. Mixture models

Properties of EM

Incomplete (observed) data: X = {x1, . . . , xN}

Hidden (unobserved) data: Y = {y1, . . . , yN}

Complete data: Z = (X, Y)

Joint density

p (Z) = p (X, Y) = p
(
Y
∣∣∣X) p (X)

With parameters

p
(
Z
∣∣∣ θ) = p

(
X, Y

∣∣∣ θ) = p
(
Y
∣∣∣X, θ) p(X ∣∣∣ θ)

In the case of Gaussian mixtures
p
(
X
∣∣∣ θ) - likelihood of the mixture model

p
(
Y
∣∣∣X, θ) - predictions of the mixture component
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4. Mixture models

Properties of EM

Incomplete likelihood

L
(
θ
∣∣∣X) = p

(
X
∣∣∣ θ) =

N∏
n=1

p
(
xn
∣∣∣ θ)

Complete likelihood

L
(
θ
∣∣∣ Z) = p

(
Z
∣∣∣ θ) = p

(
X, Y

∣∣∣ θ) = p
(
Y
∣∣∣X, θ) p(X ∣∣∣ θ)

=
N∏
n=1

p
(
yn
∣∣∣ xn, θ) p(xn ∣∣∣ θ)
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4. Mixture models

EM Algorithm

We don’t know Y , but if we have the current guess θi−1 of the
parameters θ, we can it use that to predict Y

Formally we compute the expected value of the (complete)
log-likelihood given the data X and the current estimation of θ

EY
[
log p

(
X, Y

∣∣∣ θ) ∣∣∣X, θi−1] =: Q
(
θ, θi−1

)
X - fixed; Y - random variable; θ - variable; θi−1 - current
estimation of the parameters (fixed)
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4. Mixture models

Properties of the EM Algorithm

Maximize the expected complete log-likelihood

Q
(
θ, θi−1

)
= EY

[
log p

(
X, Y

∣∣∣ θ) ∣∣∣X, θi−1]
=

∫
p
(
y
∣∣∣X, θi−1) log p

(
X, y

∣∣∣ θ) dy
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4. Mixture models

Properties of the EM Algorithm

Q
(
θ, θi−1

)
=

∫
p
(
y
∣∣∣X, θi−1) log p

(
X, y

∣∣∣ θ) dy
E-step (expectation): compute p

(
y
∣∣∣X, θi−1) to be able to

compute the expectation Q
(
θ, θi−1

)
M-step (maximization): maximize the expected value of the
complete log-likelihood

θi = arg max
θ
Q
(
θ, θi−1

)
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4. Mixture models

Formal Properties of the EM Algorithm

Main result from Dempster et al, Maximum Likelihood from
Incomplete Data via the EM Algorithm, 1977

The expected complete log-likelihood of the i-th iteration is at
least as good as that of the (i-1)-th iteration:

Q
(
θi, θi−1

)
≥ Q

(
θi−1, θi−1

)
If this expectation is maximized w.r.t. θi , then it holds that:

L
(
θi
∣∣∣X) ≥ L(θi−1 ∣∣∣X)
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4. Mixture models

Formal Properties of the EM Algorithm

Consequence of the previous statements
The incomplete log-likelihood increases in every iteration (or at
least stays the same)

The incomplete log-likelihood is maximized (locally)

In practice
The quality of the results depends on the initialization

If we initialize poorly, we may get stuck in poor local optima

EM relies on good initialization of the parameters

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 67 / 77



4. Mixture models

Special case - Gaussian Mixtures

For mixtures of Gaussians there is a closed form solution

Look at the fully general case: also estimate the variances of the
mixture components and the prior distribution over the mixture
components

θi = arg max
θ
Q
(
θ, θi−1

)
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4. Mixture models

EM for Gaussian Mixtures

Algorithm
Initialize parameters: µ1, σ1, π1 . . .

While stop-condition is not met
E-step: Compute the posterior distribution, also called
responsibility, for each mixture component and for all data points

αnj = p
(
j
∣∣∣ xn) =

πjN
(
xn
∣∣∣µj, σj)∑M

i=1 πiN
(
xn
∣∣∣µi, σi)

M-step: Compute the new parameters using weighted estimates

µnewj =
1
Nj

N∑
n=1

αnjxn with Nj =
N∑
n=1

αnj

(
σnewj

)2
=
1
Nj

N∑
n=1

αnj

(
xn − µnewj

)2
, πnewj =

Nj
N
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4. Mixture models

Expectation Maximization
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4. Mixture models

How many components?

How many mixture components do we need?
More components will typically lead to a better likelihood

But are more components necessarily better? Not always,
because of overfitting!

(Simple) automatic selection
Find K that maximizes the Akaike information criterion

log p
(
X
∣∣∣ θML)− K

where K is the number of parameters

Or find K that maximizes the Bayesian information criterion

log p
(
X
∣∣∣ θML)− 12K logN

where N is the number of data points
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4. Mixture models

Before we move on... It is important to
understand

Mixture models are much more general than mixtures of
Gaussians

One can have mixtures of any parametric distribution, and even
mixtures of different parametric distributions

Gaussian mixtures are only one of many possibilities, though by
far the most common one

Expectation maximization is not just for fitting mixtures of
Gaussians

One can fit other mixture models with EM

EM is still more general, in that it applies to many other hidden
variable models
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5. Wrap-Up

Outline

1. Probability Density

2. Parametric models
Maximum Likelihood Method

3. Non-Parametric Models
Histograms
Kernel Density Estimation
K-nearest Neighbors

4. Mixture models

5. Wrap-Up
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5. Wrap-Up

5. Wrap-Up

You know now:
The difference between parametric and non-parametric models

More about the likelihood function and how to derive the
maximum likelihood estimators for the Gaussian distribution

What Bayesian estimation is

Different non-parametric models (histogram, kernel density
estimation and k-nearest neighbors)

What mixture models are

What the Expectation-Maximization idea and algorithm are
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5. Wrap-Up

Self-Test Questions

Where do we get the probability of data from?

What are parametric methods and how to obtain their
parameters?

How many parameters have non-parametric methods?

What are mixture models?

Should gradient methods be used for training mixture models?

How does the EM algorithm work?

What is the biggest problem of mixture models?
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5. Wrap-Up

Homework

Reading Assignment for next lecture
Clustering: Murphy ch. 25

Bias & Variance: Bishop ch. 3.2, Murphy ch. 6.4
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5. Wrap-Up
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