

Statistical Machine Learning

Lecture 08: Regression

Kristian Kersting TU Darmstadt

Summer Term 2020

Today's Objectives

- Make you understand how to learn a continuous function
- Covered Topics
 - Linear Regression and its interpretations
 - What is overfitting?
 - Deriving Linear Regression from Maximum Likelihood Estimation
 - Bayesian Linear Regression

Outline

- 1. Introduction to Linear Regression
- 2. Maximum Likelihood Approach to Regression
- 3. Bayesian Linear Regression
- 4. Wrap-Up

Outline

1. Introduction to Linear Regression

2. Maximum Likelihood Approach to Regression

3. Bayesian Linear Regression

4. Wrap-Up

Reminder

Our task is to learn a mapping f from input to output

$$f: I \to O, \quad y = f(x; \theta)$$

Input: $x \in I$ (images, text, sensor measurements, ...)

Parameters: $\theta \in \Theta$ (what needs to be "learned")

Regression

Learn a mapping into a continuous space

$$0 = \mathbb{R}$$

$$\bullet 0 = \mathbb{R}^3$$

. . .

Motivation

K. Kersting based on Slides from J. Peters • Statistical Machine Learning • Summer Term 2020

You want to predict the torques of a robot arm

$$y = l\ddot{q} - \mu\dot{q} + mlg\sin(q)$$

= $\begin{bmatrix} \ddot{q} & \dot{q} & \sin(q) \end{bmatrix} \begin{bmatrix} l & -\mu & mlg \end{bmatrix}^{\mathsf{T}}$
= $\phi(\mathbf{x})^{\mathsf{T}} \theta$

Can we do this with a data set?

$$\mathcal{D} = \left\{ (\mathbf{x}_i, y_i) \, \middle| \, i = 1 \cdots n \right\}$$

A linear regression problem!

6 / 55

■ We are given pairs of training data points and associated function values (**x**_{*i*}, *y*_{*i*})

$$X = \left\{ \mathbf{x}_1 \in \mathbb{R}^d, \dots, \mathbf{x}_n \right\}$$
$$Y = \left\{ y_1 \in R, \dots, y_n \right\}$$

- Note: here we only do the case $y_i \in \mathbb{R}$. In general y_i can have more than one dimension, i.e., $y_i \in \mathbb{R}^f$ for some positive f
- Start with linear regressor

$$\mathbf{x}_i^\mathsf{T}\mathbf{w} + w_0 = y_i \quad \forall i = 1, \dots, n$$

- One linear equation for each training data point/label pair
- Exactly the same basic setup as for least-squares classification! Only the values are continuous

K. Kersting based on Slides from J. Peters • Statistical Machine Learning • Summer Term 2020 7 / 55

$$\mathbf{x}_i^{\mathsf{T}}\mathbf{w} + w_0 = y_i \quad \forall i = 1, \dots, n$$

Step 1: Define

$$\hat{\boldsymbol{x}}_i = \left(egin{array}{c} \mathbf{x}_i \ \mathbf{1} \end{array}
ight) \quad \hat{\mathbf{w}} = \left(egin{array}{c} \mathbf{w} \ w_0 \end{array}
ight)$$

$$\mathbf{x}_i^\mathsf{T}\mathbf{w} + w_0 = y_i \quad \forall i = 1, \dots, n$$

Step 1: Define

$$\hat{\boldsymbol{x}}_i = \left(egin{array}{c} \mathbf{x}_i \ 1 \end{array}
ight) \quad \hat{\mathbf{w}} = \left(egin{array}{c} \mathbf{w} \ w_0 \end{array}
ight)$$

Step 2: Rewrite

$$\hat{\mathbf{x}}_{i}^{\mathsf{T}}\hat{\mathbf{w}}=y_{i} \quad \forall i=1,\ldots,n$$

$$\mathbf{x}_i^\mathsf{T}\mathbf{w} + w_0 = y_i \quad \forall i = 1, \dots, n$$

Step 1: Define

$$\hat{\boldsymbol{x}}_i = \left(egin{array}{c} \mathbf{x}_i \ 1 \end{array}
ight) \quad \hat{\mathbf{w}} = \left(egin{array}{c} \mathbf{w} \ w_0 \end{array}
ight)$$

Step 2: Rewrite

$$\hat{\mathbf{x}}_i^{\mathsf{T}}\hat{\mathbf{w}} = y_i \quad \forall i = 1, \dots, n$$

Step 3: Matrix-vector notation

$$\hat{\mathbf{X}}^{\mathsf{T}}\hat{\mathbf{w}} = \mathbf{y}$$

where $\hat{\mathbf{X}} = [\hat{\mathbf{x}}_1, \dots, \hat{\mathbf{x}}_n]$ (each $\hat{\mathbf{x}}_i$ is a vector) and $\mathbf{y} = [y_1, \dots, y_n]^{\mathsf{T}}$

K. Kersting based on Slides from J. Peters • Statistical Machine Learning • Summer Term 2020 8 / 55

Step 4: Find the least squares solution

$$\begin{split} \hat{\mathbf{w}} &= \arg\min_{\mathbf{w}} \left\| \hat{\mathbf{X}}^{\mathsf{T}} \mathbf{w} - \mathbf{y} \right\|^2 \\ \nabla_{\mathbf{w}} \left\| \hat{\mathbf{X}}^{\mathsf{T}} \mathbf{w} - \mathbf{y} \right\|^2 &= \mathbf{0} \\ \hat{\mathbf{w}} &= \left(\hat{\mathbf{X}} \hat{\mathbf{X}}^{\mathsf{T}} \right)^{-1} \hat{\mathbf{X}} \mathbf{y} \end{split}$$

A closed form solution!

$$\hat{\mathbf{w}} = \left(\hat{\mathbf{X}} \hat{\mathbf{X}}^{\intercal}
ight)^{-1} \hat{\mathbf{X}} \mathbf{y}$$

Where is the costly part of this computation?

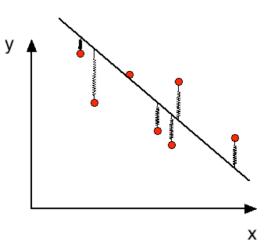
$$\hat{\mathbf{w}} = \left(\hat{\mathbf{X}}\hat{\mathbf{X}}^{\intercal}
ight)^{-1}\hat{\mathbf{X}}\mathbf{y}$$

- Where is the costly part of this computation?
 - The inverse is a $\mathbb{R}^{D \times D}$ matrix
 - Naive inversion takes $O(D^3)$, but better methods exist
- What can we do if the input dimension *D* is too large?

$$\hat{\mathbf{w}} = \left(\hat{\mathbf{X}}\hat{\mathbf{X}}^{\intercal}
ight)^{-1}\hat{\mathbf{X}}\mathbf{y}$$

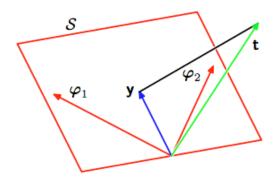
- Where is the costly part of this computation?
 - The inverse is a $\mathbb{R}^{D \times D}$ matrix
 - Naive inversion takes $O(D^3)$, but better methods exist
- What can we do if the input dimension *D* is too large?
 - Gradient descent
 - Work with fewer dimensions

Mechanical Interpretation



Geometric Interpretation

Predicted outputs are Linear Combinations of Features! Samples are projected in this Feature Space



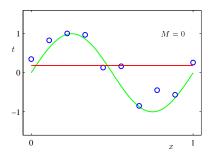
- How can we fit arbitrary polynomials using least-squares regression?
 - We introduce a feature transformation as before

$$egin{aligned} y\left(\mathbf{x}
ight) &= \mathbf{w}^{\mathsf{T}}\phi\left(\mathbf{x}
ight) \ &= \sum_{i=0}^{M} w_i \phi_i\left(\mathbf{x}
ight) \end{aligned}$$

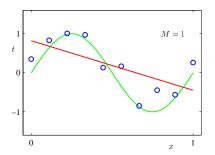
- Assume $\phi_0(\mathbf{x}) = 1$
- $\phi_i(.)$ are called the basis functions
- Still a linear model in the parameters w
- E.g. fitting a cubic polynomial

$$\phi(\mathbf{x}) = \left(1, \mathbf{x}, \mathbf{x}^2, \mathbf{x}^3\right)^\mathsf{T}$$

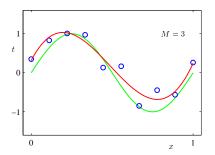
Polynomial of degree 0 (constant value)



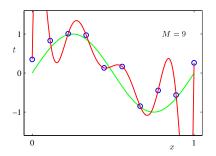
Polynomial of degree 1 (line)



Polynomial of degree 3 (cubic)



Polynomial of degree 9



Massive overfitting

1. Introduction to Linear Regression

2. Maximum Likelihood Approach to Regression

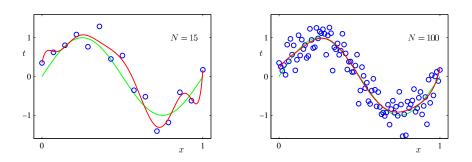
3. Bayesian Linear Regression

4. Wrap-Up

Overfitting

Relatively little data leads to overfitting

Enough data leads to a good estimate



Probabilistic Regression

Assumption 1: Our target function values are generated by adding noise to the function estimate

$$y = f(\mathbf{x}, \mathbf{w}) + \epsilon$$

y - target function value; *f* - regression function; **x** - input value;
 w - weights or parameters; *e* - noise

Probabilistic Regression

Assumption 1: Our target function values are generated by adding noise to the function estimate

$$y = f(\mathbf{x}, \mathbf{w}) + \epsilon$$

- *y* target function value; *f* regression function; **x** input value;
 w weights or parameters; *ϵ* noise
- Assumption 2: The noise is a random variable that is Gaussian distributed

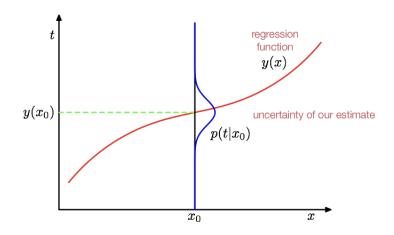
$$\epsilon \sim \mathcal{N}\left(\mathbf{0}, \beta^{-1}\right)$$
$$\rho\left(y \mid \mathbf{x}, \mathbf{w}, \beta\right) = \mathcal{N}\left(y \mid f\left(\mathbf{x}, \mathbf{w}\right), \beta^{-1}\right)$$

f (**x**, **w**) is the mean; β^{-1} is the variance (β is the precision)

■ Note that *y* is now a random variable with underlying probability distribution $p(y | \mathbf{x}, \mathbf{w}, \beta)$

2. Maximum Likelihood Approach to Regression

Probabilistic Regression



Probabilistic Regression

Given

- **•** Training input data points $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_n] \in \mathbb{R}^{d \times n}$
- Associated function values $\mathbf{Y} = [y_1, \dots, y_n]^{\mathsf{T}}$

Conditional likelihood (assuming the data is i.i.d.)

$$p\left(\mathbf{y} \mid \mathbf{X}, \mathbf{w}, \beta\right) = \prod_{i=1}^{n} \mathcal{N}\left(y_{i} \mid f\left(\mathbf{x}_{i}, \mathbf{w}\right), \beta^{-1}\right)$$

(with linear model)

$$=\prod_{i=1}^{n}\mathcal{N}\left(\mathbf{y}_{i}\left|\mathbf{w}^{\mathsf{T}}\boldsymbol{\phi}\left(\mathbf{x}_{i}\right),\beta^{-1}\right)\right.$$

w^T ϕ (**x**_i) is the generalized linear regression function

Maximize the likelihood w.r.t. (with respect to) w and β

Maximum Likelihood Regression

Simplify using the log-likelihood

$$\log p\left(\mathbf{y} \mid \mathbf{X}, \mathbf{w}, \beta\right) = \sum_{i=1}^{n} \log \mathcal{N}\left(y_{i} \mid \mathbf{w}^{\mathsf{T}} \phi\left(\mathbf{x}_{i}\right), \beta^{-1}\right)$$
$$= \sum_{i=1}^{n} \left[\log\left(\frac{\sqrt{\beta}}{\sqrt{2\pi}}\right) - \frac{\beta}{2}\left(y_{i} - \mathbf{w}^{\mathsf{T}} \phi\left(\mathbf{x}_{i}\right)\right)^{2}\right]$$
$$= \frac{n}{2} \log \beta - \frac{n}{2} \log\left(2\pi\right) - \frac{\beta}{2} \sum_{i=1}^{n} \left(y_{i} - \mathbf{w}^{\mathsf{T}} \phi\left(\mathbf{x}_{i}\right)\right)^{2}$$

Maximum Likelihood Regression

Gradient w.r.t. w

$$\nabla_{\mathbf{w}} \log p\left(\mathbf{y} \mid \mathbf{X}, \mathbf{w}, \beta\right) = \mathbf{0}$$
$$-\beta \sum_{i=1}^{n} \left(y_{i} - \mathbf{w}^{\mathsf{T}} \phi\left(\mathbf{x}_{i}\right)\right) \phi\left(\mathbf{x}_{i}\right) = \mathbf{0}$$

Define

$$\mathbf{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}, \quad \mathbf{w} = \begin{bmatrix} w_1 \\ \vdots \\ w_n \end{bmatrix}, \quad \Phi = \begin{bmatrix} | & | \\ \phi(\mathbf{x}_1) & \dots & \phi(\mathbf{x}_n) \\ | & | \end{bmatrix}$$

2. Maximum Likelihood Approach to Regression

Maximum Likelihood Regression

$$\sum_{i=1}^{n} y_{i} \phi(\mathbf{x}_{i}) = \left[\sum_{i=1}^{n} \phi(\mathbf{x}_{i}) \phi(\mathbf{x}_{i})^{\mathsf{T}}\right] \mathbf{w}$$
$$\Phi \mathbf{y} = \Phi \Phi^{\mathsf{T}} \mathbf{w}$$
$$\mathbf{w}_{\mathsf{ML}} = (\Phi \Phi^{\mathsf{T}})^{-1} \Phi \mathbf{y}$$

The same result as in least squares regression!

Maximum Likelihood Regression

We obtain the same w as with least squares regression

- Least-squares is equivalent to assuming the targets are Gaussian distributed
- Note: The least squares method is not distribution-free!

Maximum Likelihood Regression

We obtain the same w as with least squares regression

- Least-squares is equivalent to assuming the targets are Gaussian distributed
- Note: The least squares method is not distribution-free!
- However, the Maximum Likelihood approach is much more powerful!
 - \blacksquare We can also estimate β

$$\beta_{\mathsf{ML}} = \left(\frac{1}{n}\sum_{i=1}^{n} \left(y_{i} - \mathbf{w}_{\mathsf{ML}}^{\mathsf{T}}\phi\left(\mathbf{x}_{i}\right)\right)^{2}\right)^{-1}$$

We can gauge the uncertainty of our estimate!

- Given a new data point \mathbf{x}_t , in least squares regression the function value is $y_t = \hat{\mathbf{x}}_t^{\mathsf{T}} \hat{\mathbf{w}}$
- But in maximum likelihood regression we have a probability distribution over the function value $p(y | \mathbf{x}, \mathbf{w}, \beta)$
- How do we actually estimate a function value y_t for a new data point \mathbf{x}_t ?

- Given a new data point \mathbf{x}_t , in least squares regression the function value is $y_t = \hat{\mathbf{x}}_t^{\mathsf{T}} \hat{\mathbf{w}}$
- But in maximum likelihood regression we have a probability distribution over the function value $p(y | \mathbf{x}, \mathbf{w}, \beta)$
- How do we actually estimate a function value y_t for a new data point \mathbf{x}_t ?
- We need a loss function, just as in the classification case

$$L: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}^+$$

(y_t, f (**x**_t)) $\rightarrow L(y_t, f (x_t))$

Minimize the expected loss

$$\mathbb{E}_{\mathbf{x}, y \sim p(\mathbf{x}, y)} \left[L \right] = \int \int L \left(y, f(\mathbf{x}) \right) p(\mathbf{x}, y) \, \mathrm{d}\mathbf{x} \mathrm{d}y$$

Minimize the expected loss

$$\mathbb{E}_{\mathbf{x}, y \sim p(\mathbf{x}, y)} \left[L \right] = \int \int L \left(y, f(\mathbf{x}) \right) p\left(\mathbf{x}, y \right) d\mathbf{x} dy$$

Simplest case: squared loss

$$L(y, f(\mathbf{x})) = (y - f(\mathbf{x}))^{2}$$
$$\mathbb{E}_{\mathbf{x}, y \sim p(\mathbf{x}, y)} [L] = \int \int (y - f(\mathbf{x}))^{2} p(\mathbf{x}, y) d\mathbf{x} dy$$
$$\frac{\partial \mathbb{E} [L]}{\partial f(\mathbf{x})} = -2 \int (y - f(\mathbf{x})) p(\mathbf{x}, y) dy = 0$$
$$\int y p(\mathbf{x}, y) dy = f(\mathbf{x}) \int p(\mathbf{x}, y) dy$$

Loss Functions in Regression

$$\int yp(\mathbf{x}, y) \, dy = f(\mathbf{x}) \int p(\mathbf{x}, y) \, dy$$
$$\int yp(\mathbf{x}, y) \, dy = f(\mathbf{x}) p(\mathbf{x})$$
$$f(\mathbf{x}) = \int y \frac{p(\mathbf{x}, y)}{p(\mathbf{x})} \, dy = \int yp(y \mid \mathbf{x}) \, dy$$
$$f(\mathbf{x}) = \mathbb{E}_{y \sim p(y \mid \mathbf{x})} [y] = \mathbb{E} \left[y \mid \mathbf{x} \right]$$

- Under squared loss, the optimal regression function is the mean $\mathbb{E}\left[y \mid \mathbf{x}\right]$ of the posterior $p(y \mid \mathbf{x})$
- It is also called mean prediction

K. Kersting based on Slides from J. Peters • Statistical Machine Learning • Summer Term 2020 29 / 55

2. Maximum Likelihood Approach to Regression

Loss Functions in Regression

For our generalized linear regression function

$$f(\mathbf{x}) = \int y \mathcal{N}\left(y \,\middle|\, \mathbf{w}^{\mathsf{T}} \phi\left(\mathbf{x}\right), \beta^{-1}\right) \mathrm{d}y = \mathbf{w}^{\mathsf{T}} \phi\left(\mathbf{x}\right)$$

2. Maximum Likelihood Approach to Regression

Probabilistic Regression



1. Introduction to Linear Regression

2. Maximum Likelihood Approach to Regression

3. Bayesian Linear Regression

4. Wrap-Up

- Back to our original problem
 - We wanted to avoid overfitting and instabilities
 - Maximum likelihood also leads to overfitting (in the extreme case think if you only had one data point)
- What can we use to counter the problem?

■ We place a prior on the parameters **w** to tame the instabilities

$$p\left(\mathbf{w} \mid \mathbf{X}, \mathbf{y}\right) \propto p\left(\mathbf{y} \mid \mathbf{X}, \mathbf{w}\right) p\left(\mathbf{w}\right)$$

- Parameter prior: *p*(**w**)
- Likelihood of targets under the data and parameters (as before): $p(\mathbf{y} \mid \mathbf{X}, \mathbf{w})$
- Posterior over the parameters: $p\left(\mathbf{w} \mid \mathbf{X}, \mathbf{y}\right)$

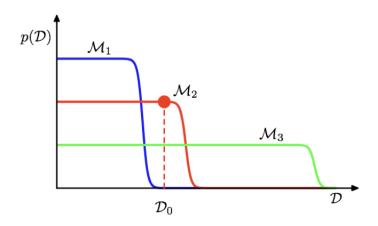
We place a prior on the parameters w to tame the instabilities

$$p\left(\mathbf{w} \mid \mathbf{X}, \mathbf{y}\right) \propto p\left(\mathbf{y} \mid \mathbf{X}, \mathbf{w}\right) p\left(\mathbf{w}\right)$$

- Parameter prior: *p*(**w**)
- Likelihood of targets under the data and parameters (as before): $p(\mathbf{y} \mid \mathbf{X}, \mathbf{w})$
- Posterior over the parameters: $p(\mathbf{w} \mid \mathbf{X}, \mathbf{y})$
- Notice the VERY important difference: in this setting, you do not get anymore a single value for the parameters, but rather a probability distribution over the parameters

TECHNISCHI UNIVERSITĂ

Basic Idea: Prior controls the Model Class and hence what Data Sets can be explained



Bayesian Regression

- Simple idea: Put a Gaussian prior on **w**
- It will put a "soft" limit on the coefficients and thus avoid instabilities

$$\mathbf{w} \sim p\left(\mathbf{w} \mid \alpha\right) = \mathcal{N}\left(\mathbf{w} \mid \mathbf{0}, \alpha^{-1} \mathbf{I}\right)$$

- We use a zero mean Gaussian to keep the derivation compact, but you can use another mean
- Zero mean and spherical covariance (given by the diagonal covariance matrix)

Bayesian Regression

- Simple idea: Put a Gaussian prior on **w**
- It will put a "soft" limit on the coefficients and thus avoid instabilities

$$\mathbf{w} \sim p\left(\mathbf{w} \mid \alpha\right) = \mathcal{N}\left(\mathbf{w} \mid \mathbf{0}, \alpha^{-1} \mathbf{I}\right)$$

- We use a zero mean Gaussian to keep the derivation compact, but you can use another mean
- Zero mean and spherical covariance (given by the diagonal covariance matrix)
- The posterior becomes

$$\begin{split} \rho\left(\mathbf{w} \left| \mathbf{X}, \mathbf{y}, \alpha, \beta\right.\right) &\propto \rho\left(\mathbf{y} \left| \mathbf{X}, \mathbf{w}, \beta\right.\right) \rho\left(\mathbf{w} \left| \alpha\right.\right) \\ &\propto \rho\left(\mathbf{y} \left| \mathbf{X}, \mathbf{w}, \beta\right.\right) \mathcal{N}\left(\mathbf{w} \left| \mathbf{0}, \alpha^{-1} \mathbf{I}\right.\right) \end{split}$$

K. Kersting based on Slides from J. Peters • Statistical Machine Learning • Summer Term 2020

Maximum A-Posteriori (MAP)

First attempt to solve this problem: estimate w by maximizing the (log) posterior

$$\log p\left(\mathbf{w} \mid \mathbf{X}, \mathbf{y}, \alpha, \beta\right) = \log p\left(\mathbf{y} \mid \mathbf{X}, \mathbf{w}, \beta\right) + \log \mathcal{N}\left(\mathbf{w} \mid \mathbf{0}, \alpha^{-1}\mathbf{I}\right) + \text{const}$$
$$= \sum_{i=1}^{n} \log \mathcal{N}\left(y_{i} \mid \mathbf{w}^{\mathsf{T}} \phi\left(\mathbf{x}_{i}\right), \beta^{-1}\right)$$
$$+ \log \mathcal{N}\left(\mathbf{w} \mid \mathbf{0}, \alpha^{-1}\mathbf{I}\right) + \text{const}$$
$$= -\frac{\beta}{2} \sum_{i=1}^{n} \left(y_{i} - \mathbf{w}^{\mathsf{T}} \phi\left(\mathbf{x}_{i}\right)\right)^{2} - \frac{\alpha}{2} \mathbf{w}^{\mathsf{T}} \mathbf{w} + \text{const}$$

Maximum A-Posteriori (MAP)

$$\nabla_{\mathbf{w}} \log p\left(\mathbf{w} \mid \mathbf{X}, \mathbf{y}, \alpha, \beta\right) = \beta \sum_{i=1}^{n} \left(y_{i} - \mathbf{w}^{\mathsf{T}} \phi\left(\mathbf{x}_{i}\right)\right) \phi\left(\mathbf{x}_{i}\right) - \alpha \mathbf{w} = \mathbf{0}$$
$$\beta \sum_{i=1}^{n} y_{i} \phi\left(\mathbf{x}\right) = \beta \left[\sum_{i=1}^{n} \phi\left(\mathbf{x}_{i}\right) \phi\left(\mathbf{x}_{i}\right)^{\mathsf{T}}\right] \mathbf{w} + \alpha \mathbf{w}$$
$$\beta \sum_{i=1}^{n} y_{i} \phi\left(\mathbf{x}\right) = \beta \left[\sum_{i=1}^{n} \phi\left(\mathbf{x}_{i}\right) \phi\left(\mathbf{x}_{i}\right)^{\mathsf{T}} + \alpha\right] \mathbf{w}$$
$$\beta \Phi \mathbf{y} = \left(\beta \Phi \Phi^{\mathsf{T}} + \alpha \mathsf{I}\right) \mathbf{w}$$
$$\mathbf{w}_{\mathsf{MAP}} = \left(\Phi \Phi^{\mathsf{T}} + \frac{\alpha}{\beta} \mathsf{I}\right)^{-1} \Phi \mathbf{y}$$

• What is the role of α/β in the expression?

K. Kersting based on Slides from J. Peters • Statistical Machine Learning • Summer Term 2020 38 / 55

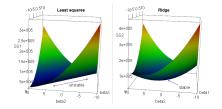
Maximum A-Posteriori (MAP)

$$\mathbf{w}_{\mathrm{MAP}} = \left(\varPhi \Phi^{\mathrm{T}} + \frac{\alpha}{\beta} \mathbf{I} \right)^{-1} \varPhi \mathbf{y}$$

The prior has the effect that it regularizes the pseudo-inverse

Also called ridge regression

Intuition for the term "ridge", although these are not the historical reasons : If there is multicollinearity, we get a "ridge" in the likelihood function. This in turn yields a long "valley" in the RSS. Ridge regression "fixes" the ridge. It adds a penalty that turns the ridge into a nice peak in likelihood space.



Maximum A-Posteriori (MAP) vs Regularized Least-squares Linear Regression

- There is another way to look at the MAP result
- Let us add a regularization term to our objective from Least-squares Linear Regression

$$\hat{\mathbf{w}} = \arg\min_{\mathbf{w}} \frac{1}{2} \left\| \hat{\mathbf{X}}^{\mathsf{T}} \mathbf{w} - \mathbf{y} \right\|^2 + \frac{\lambda}{2} \left\| \mathbf{w} \right\|^2$$

Solving for **w** we get a new estimate

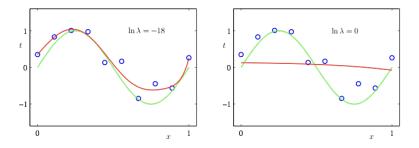
$$\hat{\mathbf{w}} = \left(\hat{\mathbf{X}}\hat{\mathbf{X}}^{\intercal} + \frac{\lambda}{2}\mathbf{I}\right)^{-1}\hat{\mathbf{X}}\mathbf{y}$$

 $\quad \ \ \, \hbox{ where } \lambda = \alpha/\beta$

When you place a regularizer λ in least-squares linear regression, you are assuming the targets have Gaussian distributed noise, but also that your parameters are Gaussian distributed

Bayesian Regression

Polynomial of degree 9 with prior on w



■ $\lambda = \alpha/\beta$ controls the complexity of the model and determines the degree of overfitting

Bayesian Regression

Table of the coefficients w^{*} for M = 9 polynomials with various values for the regularization parameter λ . Note that $\ln \lambda = -\infty$ corresponds to a model with no regularization, i.e., to the graph at the bottom right in Figure 1.4. We see that, as the value of λ increases, the typical magnitude of the coefficients gets smaller.

	$\ln \lambda = -\infty$	$\ln \lambda = -18$	$\ln\lambda=0$
w_0^\star	0.35	** 0.35	0.13
w_1^\star	232.37	4.74	-0.05
w_2^{\star}	-5321.83	-0.77	-0.06
w_3^{\star}	48568.31	-31.97	-0.05
w_4^{\star}	-231639.30	-3.89	-0.03
w_5^{\star}	640042.26	55.28	-0.02
w_6^{\star}	-1061800.52	41.32	-0.01
w_7^{\star}	1042400.18	-45.95	-0.00
w_8^{\star}	-557682.99	-91.53	0.00
w_9^{\star}	125201.43	72.68	0.01

[Bishop]

- We can go further than MAP estimation
- Observation: We do not actually need to know w, all we want to do is to predict a function value based on the training data
- Idea: "Remove" w by marginalizing over it

$$p\left(y_{t} \mid \mathbf{x}_{t}, \mathbf{X}, \mathbf{y}\right) = \int p\left(y_{t}, \mathbf{w} \mid \mathbf{x}_{t}, \mathbf{X}, \mathbf{y}\right) d\mathbf{w}$$

y_t - predicted value; x_t - test input; X - training data points; y - training function values

$$\underbrace{\rho\left(y_{t} \mid \mathbf{x}_{t}, \mathbf{X}, \mathbf{y}\right)}_{p\left(y_{t} \mid \mathbf{x}_{t}, \mathbf{X}, \mathbf{y}\right)} = \int \rho\left(y_{t}, \mathbf{w} \mid \mathbf{x}_{t}, \mathbf{X}, \mathbf{y}\right) d\mathbf{w}$$

predictive distribution

$$= \int p\left(y_t \mid \mathbf{w}, \mathbf{x}_t, \mathbf{X}, \mathbf{y}\right) p\left(\mathbf{w} \mid \mathbf{x}_t, \mathbf{X}, \mathbf{y}\right) d\mathbf{w}$$
$$= \int \underbrace{p\left(y_t \mid \mathbf{w}, \mathbf{x}_t\right)}_{\text{regression model posterior distribution}} \underbrace{p\left(\mathbf{w} \mid \mathbf{X}, \mathbf{y}\right)}_{\text{dw}} d\mathbf{w}$$

For Gaussian distributions, this can be done in closed form, leading to so-called Gaussian Processes

We can also do that in closed form: integrate out all possible parameters

$$p\left(y_{*} \mid \mathbf{x}_{*}, \mathbf{X}, \mathbf{y}\right) = \int \underbrace{p\left(y_{*} \mid \mathbf{x}_{*}, \theta\right)}_{\text{likelihood}} \underbrace{p\left(\theta \mid \mathbf{X}, \mathbf{y}\right)}_{\text{parameter posterior}} d\theta$$

 \blacksquare y_{*} - predicted value; x_{*} - test input; X, y - training data

We can also do that in closed form: integrate out all possible parameters

$$p\left(y_{*} \mid \mathbf{X}_{*}, \mathbf{X}, \mathbf{y}\right) = \int \underbrace{p\left(y_{*} \mid \mathbf{x}_{*}, \theta\right)}_{\text{likelihood}} \underbrace{p\left(\theta \mid \mathbf{X}, \mathbf{y}\right)}_{\text{parameter posterior}} d\theta$$

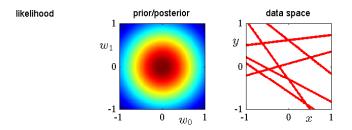
v_{*} - predicted value; \mathbf{x}_* - test input; \mathbf{X}, \mathbf{y} - training data

The predictive distribution is again a Gaussian

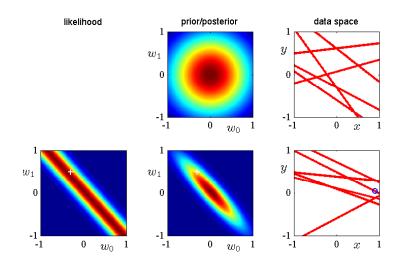
$$p\left(\mathbf{y}_{*} \mid \mathbf{x}_{*}, \mathbf{X}, \mathbf{y}\right) = \mathcal{N}\left(\mathbf{y}_{*} \mid \boldsymbol{\mu}\left(\mathbf{x}_{*}\right), \sigma^{2}\left(\mathbf{x}_{*}\right)\right)$$
$$\mu\left(\mathbf{x}_{*}\right) = \phi^{T}\left(\mathbf{x}_{*}\right) \left(\frac{\alpha}{\beta}\mathbf{I} + \Phi\Phi^{\mathsf{T}}\right)^{-1} \Phi^{\mathsf{T}}\mathbf{y}$$
$$\sigma^{2}\left(\mathbf{x}_{*}\right) = \frac{1}{\beta} + \phi^{\mathsf{T}}\left(\mathbf{x}_{*}\right) \left(\alpha\mathbf{I} + \beta\Phi\Phi^{\mathsf{T}}\right)^{-1} \phi\left(\mathbf{x}_{*}\right)$$

The variance is state dependent K. Kersting based on Slides from J. Peters • Statistical Machine Learning • Summer Term 2020

Bayesian (Linear) Regression

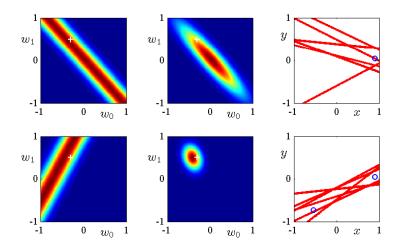


Bayesian (Linear) Regression



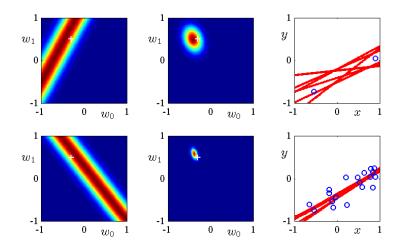
K. Kersting based on Slides from J. Peters • Statistical Machine Learning • Summer Term 2020 47 / 55

Bayesian (Linear) Regression



K. Kersting based on Slides from J. Peters • Statistical Machine Learning • Summer Term 2020 48 / 55

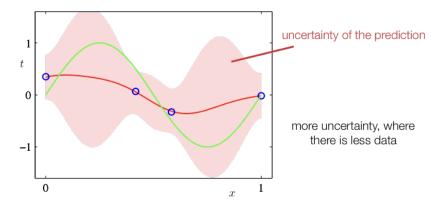
Bayesian (Linear) Regression



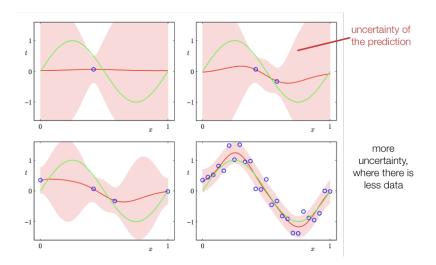
K. Kersting based on Slides from J. Peters • Statistical Machine Learning • Summer Term 2020 49 / 55

Gaussian Processes - Quick Preview

Essentially Kernelized Bayesian Ridge Regression is equivalent to Gaussian Processes. We will not cover them now, but here is a quick preview of what they can do



Gaussian Processes - Quick Preview



K. Kersting based on Slides from J. Peters • Statistical Machine Learning • Summer Term 2020 51 / 55

Outline

1. Introduction to Linear Regression

2. Maximum Likelihood Approach to Regression

3. Bayesian Linear Regression

4. Wrap-Up

4. Wrap-Up

You know now:

- How to formulate a linear regression problem
- The different methods to perform linear regression: least-squares, maximum likelihood and bayesian
- Derive the equations for the parameters using the different methods
- Why introducing a prior distribution over the parameters can combat overfitting

Self-Test Questions

- What is regression (in general) and linear regression (in particular)?
- What is the cost function of regression and how can I interpret it?
- What is overfitting?
- How can I derive a Maximum-Likelihood Estimator for Regression?
- Why are Bayesian methods important?
- What is MAP and how is it different to full Bayesian regression?

Homework

Reading Assignment for next lecture

- Murphy ch. 8
- Bishop ch. 4