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Today’s Objectives

Make you understand how to do build a discriminative classifier!

Covered Topics:
Discriminant Functions

Multi-Class Classification

Fisher Discriminate Analysis

Perceptrons

Logistic Regression
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1. Discriminant Functions

Reminder of Bayesian Decision Theory

We want to find the a-posteriori probability (posterior) of the
class Ck given the observation (feature) x

p (Ck | x) =
p (x | Ck)p (Ck)

p (x)
=

p (x | Ck)p (Ck)∑
j p
(
x | Cj

)
p
(
Cj
)

p (Ck | x) - class posterior

p (x | Ck) - class-conditional probability (likelihood)

p (Ck) - class prior

p (x) - normalization term
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1. Discriminant Functions

Reminder of Bayesian Decision Theory

Decision rule
Decide C1 if p (C1 | x) > p (C2 | x)

Using the definition of conditional distributions, equivalent to

p (x | C1) p (C1) > p (x | C2) p (C2) ≡
p (x | C1)
p (x | C2)

>
p (C2)
p (C1)

A classifier obeying this rule is called a Bayes optimal classifier
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1. Discriminant Functions

Reminder of Bayesian Decision Theory

Current approach
p (Ck | x) = p (x | Ck) p (Ck) /p (x) (Bayes’ rule)

Model and estimate the class-conditional density p (x | Ck) and
the class prior p (Ck)

Compute posterior p (Ck | x)

Minimize the error probability by maximizing p (Ck | x)
New approach

Directly encode the decision boundary

Without modeling the densities directly

Still minimize the error probability
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1. Discriminant Functions

Discriminant Functions

Formulate classification using comparisons
Discriminant functions

y1 (x) , . . . , yK (x)

Classify x as class Ck iff

yk (x) > yj (x) ∀j 6= k

More formally, a discriminant maps a vector x to one of the K
available classes
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1. Discriminant Functions

Discriminant Functions

Example of discriminant functions from the Bayes classifier

yk (x) = p (Ck | x)
yk (x) = p (x | Ck) p (Ck)
yk (x) = log p (x | Ck) + log p (Ck)
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1. Discriminant Functions

Discriminant Functions

Base case with 2 classes

y1 (x) > y2 (x)
y1 (x)− y2 (x) > 0

y (x) > 0

Example from the Bayes classifier

y (x) = p (C1 | x)− p (C2 | x)

y (x) = log
p (x | C1)
p (x | C2)

+ log
p (C1)
p (C2)
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1. Discriminant Functions

Example - Bayes Classifier

Base case with 2 classes and Gaussian class-conditionals
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1. Discriminant Functions

Linear Discriminant Functions

Base case with 2 classes

y (x) > 0 decide class 1, otherwise class 2

Simplest case: linear decision boundary
In linear discriminants, the decision surfaces are (hyper)planes

Linear Discriminant Function

y (x) = wᵀx+ w0

Where w is the normal vector and w0 the offset
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1. Discriminant Functions

Linear Discriminant Functions

Illustration of the 2D case

y (x) = wᵀx+ w0, x =
[
x1 x2

]ᵀ

x2

x1

w

x

y(x)
kwk

x?

�w0

kwk

y = 0

y < 0

y > 0

R2

R1
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1. Discriminant Functions

Linear Discriminant Functions
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1. Discriminant Functions

Discriminant Functions

Why might we want to use discriminant functions?

We could easily fit the class-conditionals using Gaussians and
use a Bayes classifier
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1. Discriminant Functions

Discriminant Functions

How about now? Do these points matter for making the decision
between the two classes?
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1. Discriminant Functions

Distribution-free Classifiers

We do not necessarily need to model all the details of the
class-conditional distributions to come up with a good decision
boundary. (The class-conditionals may have many intricacies
that do not matter at the end of the day)

If we can learn where to place the decision boundary directly, we
can avoid some of the complexity

It would be unwise to believe that such classifiers are inherently
superior to probabilistic ones. We shall see why later...
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1. Discriminant Functions

Multi-Class Case

What if we constructed a multi-class classifier from several
2-class classifiers?

If we base our decision rule on binary decisions, this may lead to
ambiguities, where we can votes for several classes such as
C1, C2 respectively C1, C2, C3
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1. Discriminant Functions

Multi-Class Case - Better Solution

Use a discriminant function to encode how strongly we believe
in each class

y1 (x) , . . . , yK (x)

Decision rule: Decide k if yk (x) > yj (x) ∀j 6= k

If the discriminant functions are linear, the decision regions are
connected and convex
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2. Fisher Discriminant Analysis
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2. Fisher Discriminant Analysis

Linear Discriminant Functions

Illustration of the 2D case

y (x) = wᵀx+ w0, x =
[
x1 x2

]ᵀ

x2

x1

w

x

y(x)
kwk

x?

�w0

kwk

y = 0

y < 0

y > 0

R2

R1
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2. Fisher Discriminant Analysis

First Attempt: Least Squares

Try to achieve a certain value of the discriminative function

y (x) = +1 ⇔ x ∈ C1
y (x) = −1 ⇔ x ∈ C2

Training data inputs: X =
{
x1 ∈ Rd, . . . , xn

}
Training data labels: Y = {y1 ∈ {−1,+1} , . . . , yn}

Linear Discriminant Function
Try to enforce xᵀi w + w0 = yi, ∀i = 1, . . . , n

There is one linear equation for each training data point/label pair
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2. Fisher Discriminant Analysis

First Attempt: Least Squares

Linear system of equations

xᵀi w + w0 = yi, ∀i = 1, . . . , n

Define x̂i =
(
xi 1

)ᵀ ∈ Rd×1, ŵ =
(
w w0

)ᵀ ∈ Rd×1

Rewrite the equation system

x̂ᵀi ŵ = yi, ∀i = 1, . . . , n

In matrix-vector notation we have

X̂ᵀŵ = y

With X̂ = [x̂1, . . . , x̂n] ∈ Rd×n and y = [y1, . . . , yn]ᵀ
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2. Fisher Discriminant Analysis

First Attempt: Least Squares

X̂ᵀŵ = y

An overdetermined system of equations

There are n equations and d + 1 unknowns
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2. Fisher Discriminant Analysis

First Attempt: Least Squares

Look for the least squares solution

ŵ∗ = argmin
ŵ

∥∥∥X̂ᵀŵ − y
∥∥∥2

= argmin
ŵ

(
X̂ᵀŵ − y

)ᵀ (
X̂ᵀŵ − y

)
= argmin

ŵ
ŵᵀX̂X̂ᵀŵ − 2yᵀX̂ᵀŵ + yᵀy

∇ŵ
(
ŵᵀX̂X̂ᵀŵ − 2yᵀX̂ᵀŵ + yᵀy

)
= 0

ŵ =
(
X̂X̂ᵀ

)−1
X̂︸ ︷︷ ︸

pseudo-inverse

y
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2. Fisher Discriminant Analysis

First Attempt: Least Squares

Problem: Least-squares is very sensitive to outliers

−4 −2 0 2 4 6 8

−8

−6

−4

−2

0

2

4

Without outliers
least-squares discriminant
works

With outliers least-squares
discriminant breaks down
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2. Fisher Discriminant Analysis

Fisher’s Linear Discriminant

Take a different view on linear classification

Find a linear projection of our data and classify the projected
values

The same thing as a linear discriminant function
Projection: y = wᵀx

Checking against a threshold: wᵀx ≥ −w0 or wᵀx + w0 ≥ 0
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2. Fisher Discriminant Analysis

Fisher’s Linear Discriminant

What is a good projection w?
Idea: Maximize the “distance” between the two classes to allow
for a good separation

First attempt: Maximize the distance between the class means

m1 =
1
|C1|

∑
i∈C1

xi m2 =
1
|C2|

∑
i∈C2

xi

Projection of the means on the 1D line of real numbers

m1 = wᵀm1 m2 = wᵀm2

Maximize squared distance between means

max (m1 −m2)2
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2. Fisher Discriminant Analysis

Fisher’s Linear Discriminant

Maximize squared distance between means

w∗ = argmax
w

(wᵀm1 − wᵀm2)2

Obvious problem: Grows unboundedly with the norm of w

Obvious solution: Fix the norm of w

max
w

(wᵀm1 − wᵀm2)
2

s.t. ‖w‖2 = 1

Constrained optimization problem!
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2. Fisher Discriminant Analysis

Fisher’s Linear Discriminant

max
w

(wᵀm1 − wᵀm2)2

s.t. ‖w‖2 = 1

Necessary conditions

∇xf (x) + λ∇xg (x) = 0
2 (wᵀm1 − wᵀm2) (m1 −m2) + 2λw = 0

It follows that
w =

m1 −m2
‖m1 −m2‖
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2. Fisher Discriminant Analysis

Fisher’s Linear Discriminant

Here’s what we get

−2 2 6

−2

0

2

4

Obvious problem: large class overlap
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2. Fisher Discriminant Analysis

Fisher’s Linear Discriminant

Here’s what we could get

−2 2 6

−2

0

2

4

Much better separation between classes

How do we get this?
Idea: Separate the means as far as possible while minimizing the
variance of each class
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2. Fisher Discriminant Analysis

Fisher’s Linear Discriminant

Second (and final) attempt:
Define within-class variances:

s21 =
∑
n∈C1

(wᵀxn −m1)2 s22 =
∑
n∈C2

(wᵀxn −m2)2

where m1 = wᵀm1 and m2 = wᵀm2

Fisher criterion

max
w
J (w) =

(m1 −m2)2
s21 + s

2
2
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2. Fisher Discriminant Analysis

Fisher’s Linear Discriminant

Fisher criterion

max
w
J (w) =

(m1 −m2)2
s21 + s

2
2

Rewrite the numerator

(m1 −m2)2 = (wᵀm1 − wᵀm2)2

= (wᵀ (m1 −m2))2

= wᵀ (m1 −m2) (m1 −m2)ᵀ︸ ︷︷ ︸
=: SB︸ ︷︷ ︸

between-class covariance

w
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2. Fisher Discriminant Analysis

Fisher’s Linear Discriminant

Fisher criterion

max
w
J (w) =

(m1 −m2)2
s21 + s

2
2

Rewrite the denominator
s21 + s22 =

∑
n∈C1

(wᵀxn − m1)2 +
∑
n∈C2

(wᵀxn − m2)2

=
∑
n∈C1

(wᵀ (xn − m1))2 +
∑
n∈C2

(wᵀ (xn − m2))2

=
∑
n∈C1

wᵀ (xn − m1) (xn − m1)ᵀ w +
∑
n∈C2

wᵀ (xn − m2) (xn − m2)ᵀ w

= wᵀ

∑
n∈C1

(xn − m1) (xn − m1)ᵀ +
∑
n∈C2

(xn − m2) (xn − m2)ᵀ


︸ ︷︷ ︸
=: SW︸ ︷︷ ︸

within-class covariance

w
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2. Fisher Discriminant Analysis

Fisher’s Linear Discriminant

Fisher criterion

max
w
J (w) =

(m1 −m2)2
s21 + s

2
2

=
wᵀSBw
wᵀSWw

Differentiating w.r.t. w and setting to 0 we have

(wᵀSBw) SWw = (wᵀSWw) SBw

Since (wᵀSBw) and (wᵀSWw) are scalars, we have that

SWw ‖ SBw

where || means collinearity
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2. Fisher Discriminant Analysis

Fisher’s Linear Discriminant

Also, we know that

SBw = (m1 −m2) (m1 −m2)ᵀ w =⇒ SBw ‖ (m1 −m2)

Hence, we have

SWw ‖ (m1 −m2)
w ‖ S−1W (m1 −m2)

Fisher’s Linear Discriminant

w ∝ S−1W (m1 −m2)
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2. Fisher Discriminant Analysis

Fisher’s Linear Discriminant

w ∝ S−1W (m1 −m2)

The Fisher linear discriminant only gives us a projection
We still need to find the threshold

E.g., use Bayes classifier with Gaussian class-conditionals

Bayes optimality
Fisher’s linear discriminant is Bayes optimal if the
class-conditional distributions are equal, with diagonal
covariance

Essentially equivalent to Linear Discriminant Analysis (LDA)
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2. Fisher Discriminant Analysis

Fisher’s Linear Discriminant

We won’t go through this here, but Fisher’s linear discriminant
can be shown to be equivalent to a certain case of a
least-squares linear classifier (see Bishop 4.1.5)

Problem with this method: it is still very sensitive to noise!

By The Way: This method is a true classic (it dates back to 1936)
Fisher, R.A., The Use of Multiple Measurements in Taxonomic
Problems. Annals of Eugenics, 7: 179-188 (1936)
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3. Perceptron Algorithm
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3. Perceptron Algorithm

New Strategy

If our classes are linearly separable, we want to make sure that
we find a separating (hyper)plane

First such algorithm we will see

The perceptron algorithm
[Rosenblatt, 1962]

Rosenblatt [1928-1971]
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3. Perceptron Algorithm

Perceptron Algorithm

Perceptron discriminant function

y (x) = sign (wᵀx + b)

where sign (x) = {+1, x > 0; 0, x = 0; −1, x < 0}
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3. Perceptron Algorithm

Perceptron Algorithm

Perceptron Algorithm
Initialize the weight vector w and bias b

For all pairs of data points (xi, yi), where yi ∈ {−1,+1}, do
If xi is correctly classified, i.e., y (xi) = yi , do nothing

Else if yi = 1 update the parameters with

w ← w + xi, b← b+ 1

Else if yi = −1 update the parameters with

w ← w − xi, b← b− 1

Repeat until convergence
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3. Perceptron Algorithm

Perceptron Algorithm - Intuition

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
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3. Perceptron Algorithm
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3. Perceptron Algorithm

Perceptron Algorithm - Intuition
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3. Perceptron Algorithm

Perceptron Algorithm

Why does this algorithm work?

We have an optimization problem

max
w
J (w) = |{x ∈ X : 〈w, x〉 < 0}|

=
∑

x∈X:〈w,x〉<0

〈w, x〉

And also a gradient method

∂J
∂w

=
∑

x∈X:〈w,x〉<0

x
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3. Perceptron Algorithm

But is the Perceptron Algorithm useful?

How often is data linearly separable?

A simple failure example is the XOR function

History: Minsky & Papert [1969] criticized the perceptron for not
being able to handle this case, which halted research on this and
related techniques for decades
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3. Perceptron Algorithm

Other Feature Spaces

It took a long time until people had realized that there is a
simple way out

Key idea: Transform the input data nonlinearly so that the
problem becomes linearly separable!

There is an important message to get out from this
Create features instead of learning from raw data

Neural networks do it automagically for you
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4. Logistic Regression
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4. Logistic Regression

Generative vs. Discriminative

There are two different views to solve the classification problem

Generative modelling
We model the class-conditional distributions p(x | C2) and
p(x | C1)

We classify by computing the class posterior using Bayes’ rule

E.g.: Naive Bayes

Discriminative modelling
We model the class-posterior directly, e.g. p(C1 | x)

Consequence: We only care about getting the classification right,
and not whether we fit the class-conditional well

E.g.: Logistic Regression
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4. Logistic Regression

Probabilistic Discriminative Models

For now, we will write the class posterior using Bayes’ rule

p (C1 | x) =
p (x | C1) p (C1)

p (x)
=
p (x | C1) p (C1)∑

i p (x, Ci)

=
p (x | C1) p (C1)∑
i p (x | Ci) p (Ci)

=
p (x | C1) p (C1)

p (x | C1) p (C1) + p (x | C2) p (C2)

=
1

1+ p (x | C2) p (C2) / (p (x | C1) p (C1))

=
1

1+ exp (−a) = σ (a)→ logistic sigmoid function

with a = log p(x|C1)p(C1)p(x|C2)p(C2)
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4. Logistic Regression

Sigmoid

Logistic / Sigmoid function

σ (a) =
1

1+ exp (−a)

[Wikipedia]

Sigmoid: ’S-shaped’

Squashes real numbers into the [0, 1] interval
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4. Logistic Regression

Probabilistic Discriminative Models

Class posterior

p (C1 | x) = σ (a) with a = log
p (x | C1) p (C1)
p (x | C2) p (C2)

Logistic regression
Assume that a is given by a linear discriminant function

p(C1 | x) = σ(wᵀx + w0)

Find w and w0 so that the class-posterior is modeled best

When is this an appropriate assumption?
When the class conditionals are Gaussians with equal
covariance

But also for a number of other distributions

Some independence of the form of the class-conditionals
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4. Logistic Regression

Logistic Regression

Model the class posterior as

p(C1 | x) = σ(wᵀx + w0)

Maximize the likelihood
Data (as always) is i.i.d. and define yi =

{
0
1

xi belongs to C1
xi belongs to C2

p
(
Y
∣∣∣X;w,w0) =

N∏
i=1

p
(
yi
∣∣∣ xi;w,w0)

=
N∏
i=1

p
(
C1
∣∣∣ xi;w,w0)1−yi p(C2 ∣∣∣ xi;w,w0)yi

=
N∏
i=1

σ(wᵀxi + w0)1−yi (1− σ(wᵀxi + w0))
yi
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4. Logistic Regression

Logistic Regression

We won’t do the derivation here (see Bishop 4.3), but basically
you can apply the logarithm to p

(
Y
∣∣∣X;w,w0) and do gradient

descent

Similar to what we have seen in regression, we can get more
robust classifiers by incorporating priors and taking a Bayesian
approach

Later, we will turn to a very different interpretation of this:
Logistic regression as a neural network
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5. Wrap-Up
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5. Wrap-Up

5. Wrap-Up

You know now:
What a Bayesian Optimal Classifier is

What a discriminant function is

How to formalize (with intuition and mathematically) the classification
problem as linearly-separable

How to compute the least squares solution for classification and why it
fails

What Fisher’s Linear Discriminant is and how it differs from
least-squares

What the perceptron is, why it fails in the XOR problem and how to
overcome it with feature spaces

The difference between Generative and Discriminative modelling

What logistic regression is
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5. Wrap-Up

Self-Test Questions

How do we get from Bayesian optimal decisions to discriminant
functions?

How to derive a discriminant function from a probability distribution?

How to deal with more than two classes?

What does linearly-separable mean?

What is Fisher discriminant analysis? How does it relate to regression?

Is Fisher’s linear discriminant Bayes optimal?

What are perceptrons? How can we train them?

What is logistic regression? How to derive the parameter update rule?
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5. Wrap-Up

Homework

Reading Assignment for next week
Bishop 7.1.5 and 12.1

Murphy 6.5 and 12.2
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