

Statistical Machine Learning

Lecture 11: Support Vector Machines

Kristian Kersting TU Darmstadt

Summer Term 2020

Today's Objectives

Covered Topics

- Linear Support Vector Classification
- Features and Kernels
- Non-Linear Support Vector Classification
- Outlook on Applications, Relevance Vector Machines and Support Vector Regression

1. From Structural Risk Minimization to Linear SVMs

2. Nonlinear SVMs

3. Applications

4. Wrap-Up

1. From Structural Risk Minimization to Linear SVMs

2. Nonlinear SVMs

3. Applications

4. Wrap-Up

Structural Risk Minimization

How can we implement structural risk minimization?

$$R(\mathbf{w}) \leq R_{\mathsf{emp}}(\mathbf{w}) + \epsilon(N, p^*, h)$$

where N is the number of training examples, p^* is the probability that the bound is met and h is the VC-dimension

Classical Machine Learning algorithms

- **Keep** ϵ (*N*, *p*^{*}, *h*) constant and minimize R_{emp} (**w**)
- $\epsilon(N, p^*, h)$ is fixed by keeping some model parameters fixed, e.g. the number of hidden neurons in a neural network (see later)

Support Vector Machines (SVMs)

- **Keep** R_{emp} (**w**) constant and minimize ϵ (N, p^*, h)
- In practice $R_{emp}(\mathbf{w}) = 0$ with separable data
- ϵ (*N*, *p*^{*}, *h*) is controlled by changing the VC-dimension ("capacity control")

K. Kersting based on Slides from J. Peters • Statistical Machine Learning • Summer Term 2020 5 / 59

- Linear classifiers (generalized later)
- Approximate implementation of the structural risk minimization principle
- If the data is linearly separable, the empirical risk of SVM classifiers will be zero, and the risk bound will be approximately minimized
- SVMs have built-in "guaranteed" generalization abilities

- For now assume linearly separable data
- N training data points

$$\{\mathbf{x}_i, y_i\}_{i=1}^N$$
 , with $\mathbf{x}_i \in \mathbb{R}^d$ and $y_i \in \{-1, 1\}$

Hyperplane that separates the data

Which hyperplane shall we use? How can we minimize the VC dimension?

K. Kersting based on Slides from J. Peters • Statistical Machine Learning • Summer Term 2020

8 / 59

Support Vector Machines

Intuitively: We should find the hyperplane with the maximum "distance" to the data

Maximizing the margin

- Why does that make sense?
- Why does it minimize the VC dimension?
- Key result (from Vapnik)
 - If the data points lie in a sphere of radius R, $\|\mathbf{x}_i\| < R$, ...
 - \blacksquare ...and the margin of the linear classifier in d dimensions is $\gamma,$ then

$$h \leq \min\left\{d, \left\lceil\frac{4R^2}{\gamma^2}\right\rceil\right\}$$

Maximizing the margin lowers a bound on the VC-dimension!

1. From Structural Risk Minimization to Linear SVMs

Support Vector Machines

Find a hyperplane so that the data is linearly separated

$$y_i(\mathbf{w}^{\mathsf{T}}\mathbf{x}_i+b) \geq 1 \quad \forall i$$

■ Enforce y_i ($\mathbf{w}^{\mathsf{T}}\mathbf{x}_i + b$) = 1 for at least one data point

- We can easily express the margin
- The distance to the hyperplane is

$$\frac{y\left(\mathbf{x}_{i}\right)}{\|\mathbf{w}\|} = \frac{\mathbf{w}^{\mathsf{T}}\mathbf{x}_{i} + b}{\|\mathbf{w}\|}$$

• (Note in the figure $b = w_0$)

Hence the margin is $\frac{1}{\|\mathbf{w}\|}$

K. Kersting based on Slides from J. Peters • Statistical Machine Learning • Summer Term 2020 11 / 59

Support vectors: all points that lie on the margin, i.e., $y_i(\mathbf{w}^{\mathsf{T}}\mathbf{x}_i + b) = 1$

Maximizing the margin $1/\|\mathbf{w}\|$ is equivalent to minimizing $\|\mathbf{w}\|^2$

Formulate as constrained optimization problem

$$\begin{array}{ll} \arg\min\limits_{\mathbf{w},b} & \frac{1}{2} \left\|\mathbf{w}\right\|^2\\ \text{s.t.} & y_i \left(\mathbf{w}^\mathsf{T} \mathbf{x}_i + b\right) - 1 \geq 0 \quad \forall i \end{array}$$

Lagrangian formulation

$$L(\mathbf{w}, b, \alpha) = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^{N} \alpha_i (y_i (\mathbf{w}^{\mathsf{T}} \mathbf{x}_i + b) - 1)$$

$$\min L(\mathbf{w}, b, \alpha) = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^{N} \alpha_i (\mathbf{y}_i (\mathbf{w}^{\mathsf{T}} \mathbf{x}_i + b) - 1)$$

$$\frac{\partial L(\mathbf{w}, b, \alpha)}{\partial b} = \mathbf{0} \implies \sum_{i=1}^{N} \alpha_i y_i = \mathbf{0}$$
$$\frac{\partial L(\mathbf{w}, b, \alpha)}{\partial \mathbf{w}} = \mathbf{0} \implies \mathbf{w} = \sum_{i=1}^{N} \alpha_i y_i \mathbf{x}_i$$

The separating hyperplane is a linear combination of the input data

But what are the α_i ?

K. Kersting based on Slides from J. Peters • Statistical Machine Learning • Summer Term 2020 14 / 59

Sparsity

Important property

- Almost all the α_i are zero
- There are only a few support vectors

But the hyperplane was written as

$$\mathbf{w} = \sum_{i=1}^{N} \alpha_i \mathbf{y}_i \mathbf{x}_i$$

SVMs are sparse learning machines The classifier only depends on a few data points

K. Kersting based on Slides from J. Peters • Statistical Machine Learning • Summer Term 2020 15 / 59

16 / 59

Dual Form

Let us rewrite the Lagrangian

$$L(\mathbf{w}, b, \alpha) = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^{N} \alpha_i (y_i (\mathbf{w}^{\mathsf{T}} \mathbf{x}_i + b) - 1)$$

= $\frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^{N} \alpha_i y_i \mathbf{w}^{\mathsf{T}} \mathbf{x}_i - \sum_{i=1}^{N} \alpha_i y_i b + \sum_{i=1}^{N} \alpha_i$

We know that

$$\sum_{i=1}^{N} \alpha_i y_i = 0$$

Hence we have

$$\hat{L}(\mathbf{w},\alpha) = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^{N} \alpha_i y_i \mathbf{w}^{\mathsf{T}} \mathbf{x}_i + \sum_{i=1}^{N} \alpha_i$$

K. Kersting based on Slides from J. Peters • Statistical Machine Learning • Summer Term 2020

Dual Form

$$\hat{L}(\mathbf{w},\alpha) = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^{N} \alpha_i y_i \mathbf{w}^{\mathsf{T}} \mathbf{x}_i + \sum_{i=1}^{N} \alpha_i$$

• Use the constraint $\mathbf{w} = \sum_{i=1}^{N} \alpha_i y_i \mathbf{x}_i$

$$\hat{L}(\mathbf{w}, \alpha) = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^N \alpha_i y_i \sum_{j=1}^N \alpha_j y_j \mathbf{x}_j^\mathsf{T} \mathbf{x}_i + \sum_{i=1}^N \alpha_i$$
$$= \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^N \sum_{j=1}^N \alpha_i \alpha_j y_j y_j \left(\mathbf{x}_j^\mathsf{T} \mathbf{x}_i\right) + \sum_{i=1}^N \alpha_i$$

Dual Form

We have also

$$\frac{1}{2} \|\mathbf{w}\|^2 = \frac{1}{2} \mathbf{w}^\mathsf{T} \mathbf{w} = \frac{1}{2} \sum_{i=1}^N \sum_{j=1}^N \alpha_i \alpha_j y_i y_j \left(\mathbf{x}_j^\mathsf{T} \mathbf{x}_i\right)$$

Finally we obtain the Wolfe dual formulation

$$\tilde{L}(\alpha) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y_j y_j \left(\mathbf{x}_j^{\mathsf{T}} \mathbf{x}_i\right)$$

• We can now solve the original problem by maximizing the dual function \tilde{L}

1. From Structural Risk Minimization to Linear SVMs

Support Vector Machines - Dual Form

$$\min \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y_i y_j \left(\mathbf{x}_j^{\mathsf{T}} \mathbf{x}_i \right)$$

s.t. $\alpha_i \ge 0$
 $\sum_{i=1}^{N} \alpha_i y_i = 0$

The separating hyperplane is given by the N_S support vectors

$$\mathbf{w} = \sum_{i=1}^{N_S} \alpha_i \mathbf{y}_i \mathbf{x}_i$$

b can also be computed, but we skip the derivation

K. Kersting based on Slides from J. Peters • Statistical Machine Learning • Summer Term 2020 19 / 59

Support Vector Machines so far

- Both the original SVM formulation (primal) as well as the derived dual formulation are quadratic programming problems (quadratic cost, linear constraints), which have unique solutions that can be computed efficiently
- Why did we bother to derive the dual form? To go beyond linear classifiers!

1. From Structural Risk Minimization to Linear SVMs

2. Nonlinear SVMs

3. Applications

4. Wrap-Up

• Nonlinear transformation ϕ of the data (features)

$$\mathbf{x} \in \mathbb{R}^d \quad \phi : \mathbb{R}^d \to H$$

- Hyperplane *H* (linear classifier in *H*) $\mathbf{w}^{\mathsf{T}}\phi(\mathbf{x}) + b = 0$
- **•** Nonlinear classifier in \mathbb{R}^d
- Same trick as in least-squares regression. So what is so special here?

Dual form

$$\min \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y_i y_j \left(\mathbf{x}_j^{\mathsf{T}} \mathbf{x}_i \right)$$

s.t. $\alpha_i \ge 0$
 $\sum_{i=1}^{N} \alpha_i y_i = 0$

With a nonlinear transformation, we obtain

$$\tilde{L}(\alpha) = \sum_{i=1}^{N} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y_{j} y_{j} \left(\phi(\mathbf{x}_{j})^{\mathsf{T}} \phi(\mathbf{x}_{i}) \right)$$

• $\phi(\mathbf{x}_i)$ only appears in scalar products with another $\phi(\mathbf{x}_j)$ • We only need to be able to evaluate scalar products

K. Kersting based on Slides from J. Peters • Statistical Machine Learning • Summer Term 2020 23 / 59

Nonlinear SVMs

What about the discriminant function?

$$y(\mathbf{x}) = \mathbf{w}^{\mathsf{T}}\phi(\mathbf{x}) + b$$

We can represent the weights differently and write the nonlinear discriminant function as

...

$$\mathbf{w} = \sum_{i=1}^{N_{S}} \alpha_{i} y_{i} \phi \left(\mathbf{x}_{i}\right)$$
$$y \left(\mathbf{x}\right) = \sum_{i=1}^{N_{S}} \alpha_{i} y_{i} \phi \left(\mathbf{x}_{i}\right)^{\mathsf{T}} \phi \left(\mathbf{x}\right) + b$$

• where N_S is the number of support vectors

The discriminant function can also be written with scalar products of the nonlinear features only

K. Kersting based on Slides from J. Peters • Statistical Machine Learning • Summer Term 2020 24 / 59

Nonlinear SVMs

- Both the dual optimization problem and the discriminant function can be written in terms of scalar products of the features
- We have already seen this when we talked about the dual version of the perceptron
- In fact the discriminant function even has the very same functional form

$$y(\mathbf{x}) = \sum_{i=1}^{N_{s}} \alpha_{i} y_{i} \phi(\mathbf{x}_{i})^{\mathsf{T}} \phi(\mathbf{x}) + b$$

Key difference: In an SVM the parameters α_i maximize the margin of the classifier, and have built-in generalization properties

K. Kersting based on Slides from J. Peters • Statistical Machine Learning • Summer Term 2020 25 / 59

Kernel Trick

Kernel trick: replace every occurrence of a scalar product between features with a kernel function

$$K\left(\mathbf{x}_{i},\mathbf{x}_{j}\right)=\phi\left(\mathbf{x}_{i}\right)^{\mathsf{T}}\phi\left(\mathbf{x}_{j}\right)$$

- If we can find a kernel function that is equivalent to this scalar product, we can avoid mapping into a high-dimensional space and instead compute the scalar-product directly
- What are examples of such kernels and when do they exist?

Polynomial Kernel

Polynomial kernel of 2nd degree

$$\mathcal{K}\left(\boldsymbol{x},\boldsymbol{y}
ight) = \left(\boldsymbol{x}^{\mathsf{T}} \boldsymbol{y}
ight)^{2} \quad \boldsymbol{x},\boldsymbol{y} \in \mathbb{R}^{2}$$

Equivalence to the dot product

$$\mathcal{K} \left(\mathbf{x}, \mathbf{y} \right) = (\mathbf{x}^{\mathsf{T}} \mathbf{y})^{2} = x_{1}^{2} y_{1}^{2} + 2x_{1} x_{2} y_{1} y_{2} + y_{1}^{2} y_{2}^{2}$$
$$\phi \left(\mathbf{x} \right)^{\mathsf{T}} \phi \left(\mathbf{y} \right) = \left(\begin{array}{c} x_{1}^{2} \\ \sqrt{2} x_{1} x_{2} \\ x_{2}^{2} \end{array} \right)^{\mathsf{T}} \left(\begin{array}{c} y_{1}^{2} \\ \sqrt{2} y_{1} y_{2} \\ y_{2}^{2} \end{array} \right)$$

- Why is the kernel method an advantage?
 - Number of computations with kernel: 3 (dot product between x and y) + 1 (square the result) = 4
 - Number of computations with feature transformation and then dot product?

K. Kersting based on Slides from J. Peters • Statistical Machine Learning • Summer Term 2020 27 / 59

TECHNISCHE UNIVERSITAT DARMSTADT

Polynomial Kernel

• We could also have used $\phi(\mathbf{x})$ as

$$\phi\left(\mathbf{x}\right)^{\mathsf{T}}\phi\left(\mathbf{y}\right) = \frac{1}{\sqrt{2}} \left(\begin{array}{c} x_1^2 - x_2^2\\ 2x_1x_2\\ x_1^2 + x_2^2 \end{array}\right)^{\mathsf{T}} \frac{1}{\sqrt{2}} \left(\begin{array}{c} y_1^2 - y_2^2\\ 2y_1y_2\\ y_1^2 + y_2^2 \end{array}\right)$$

• $\phi(\mathbf{x})$ is not unique for a given kernel function $K(\mathbf{x}, \mathbf{y})$

Polynomial Kernel of Degree d

- Let $C_d(\mathbf{x})$ be the transformation that maps a vector into the space of all ordered monomials of degree d
- We can represent all polynomials of degree d as linear functions in this transformed space
- Example
 - Ordered monomials: $x_1^2, x_1x_2, x_2x_1, x_2^2$
 - Unordered monomials: x_1^2, x_1x_2, x_2^2
- The kernel $K(\mathbf{x}, \mathbf{y}) = (\mathbf{x}^{\mathsf{T}}\mathbf{y})^d$ lets us compute arbitrary scalar products without doing the explicit mapping

$$K(\mathbf{x}, \mathbf{y}) = (\mathbf{x}^{\mathsf{T}} \mathbf{y})^{d} = C_{d}(\mathbf{x})^{\mathsf{T}} C_{d}(\mathbf{y})$$

Polynomial Kernel of Degree d

$$\mathcal{K}(\mathbf{x},\mathbf{y}) = (\mathbf{x}^{\mathsf{T}}\mathbf{y})^{d} = \mathcal{C}_{d}(\mathbf{x})^{\mathsf{T}} \mathcal{C}_{d}(\mathbf{y})$$

Dimensionality of the transformed space H: $\begin{pmatrix} d+N-1\\ d \end{pmatrix}$

Example

$$N = 16 \times 16 = 256$$

 $d = 4$
dim (H) = 183181376

The classifier has VC-dimension dim (H) + 1!

SVM - Linear Case

SVM with Kernels

Polynomial kernel with degree 3

Linearly separable Classifier almost linear

Not linearly separable (in original space)

Constructing Kernels

- So far we identified some linear transformation $\phi(\mathbf{x})$ that we think will be useful
- Then we find a kernel $K(\mathbf{x}_i, \mathbf{x}_j)$ that allows us to compute the scalar product without making the mapping explicit

$$\mathcal{K}\left(\mathbf{x}_{i},\mathbf{x}_{j}\right)=\phi\left(\mathbf{x}_{i}\right)^{\mathsf{T}}\phi\left(\mathbf{x}_{j}\right)$$

- What do kernels do?
 - They measure similarity (in a transformed space)
 - But what if we have a notion of similarity and want to encode this in a kernel function $K(\mathbf{x}_i, \mathbf{x}_j)$ directly?

Radial Basis Functions

Radial Basis Function (RBF) kernel

$$\mathcal{K}(\mathbf{x}, \mathbf{y}) = \exp\left(-\frac{\|\mathbf{x} - \mathbf{y}\|^2}{2\sigma^2}\right)$$

- Measures similarity between x and y
- Interesting property: *H* is infinite dimensional
 - Intuition given by Taylor series expansion

$$e^{x} = 1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \ldots + \frac{x^{n}}{n!} + \ldots$$

- Since we only use the kernel function, it is not a problem
- But the hyperplane also has infinite VC-dimension!

Radial Basis Function Kernel

VC-Dimension for RBF Kernel

Intuition: If we can make the radius of the kernel arbitrarily small, then at some point every data point will have its "own" kernel

But in contrast: If we bound the radius of the RBF, we can limit the VC-dimension!

K. Kersting based on Slides from J. Peters • Statistical Machine Learning • Summer Term 2020 36 / 59

Kernels

■ Question: Is the Gaussian RBF kernel a valid kernel, i.e., is there a mapping $\{H, \phi\}$ so that

$$K(\mathbf{x}, \mathbf{y}) = \phi(\mathbf{x})^{\mathsf{T}} \phi(\mathbf{y}) \text{ with } \phi: \mathbb{R}^d \to H$$

How can we assess this more generally?

Mercer's Condition

A function $K(\mathbf{x}, \mathbf{y})$ is a valid kernel, if for every $g(\mathbf{x})$ with

$$\int g\left(\mathbf{x}\right)^2 \mathrm{d}\mathbf{x} < \infty$$

it holds that

$$\int \int \mathcal{K}\left(\mathbf{x},\mathbf{y}\right) g\left(\mathbf{x}\right) g\left(\mathbf{y}\right) \mathsf{d}\mathbf{x} \mathsf{d}\mathbf{y} \geq \mathbf{0}$$

Kernels satisfying Mercer's condition

Inhomogeneous polynomial kernel

$$K(\mathbf{x},\mathbf{y}) = (\mathbf{x}^{\mathsf{T}}\mathbf{y} + c)^d$$

Can also represent polynomials of degree d

Gaussian RBF kernel

$$K(\mathbf{x}, \mathbf{y}) = \exp\left(-\frac{\|\mathbf{x} - \mathbf{y}\|^2}{2\sigma^2}\right)$$

Hyperbolic tangent kernel

$$K(\mathbf{x}, \mathbf{y}) = \operatorname{tanh}(a\mathbf{x}^{\mathsf{T}}\mathbf{y} + b)$$

Combining Kernels

- It may not be always easy to check if Mercer's condition is satisfied, but it is possible to construct new kernels out of known ones
- If $K_1(\mathbf{x}, \mathbf{y})$ and $K_2(\mathbf{x}, \mathbf{y})$ are valid kernels, then so are

. . .

$$\begin{aligned} & cK_{1}\left({\bf x}, {\bf y} \right) \\ & K_{1}\left({\bf x}, {\bf y} \right) + K_{2}\left({\bf x}, {\bf y} \right) \\ & K_{1}\left({\bf x}, {\bf y} \right)K_{2}\left({\bf x}, {\bf y} \right) \\ & f\left({\bf x} \right)K_{1}\left({\bf x}, {\bf y} \right)f\left({\bf y} \right) \end{aligned}$$

Non-separable data

What if the data is not linearly separable?

- Simple solution: transform the features into a space so that they become linearly separable
 - E.g. RBF kernel with small kernel radius
- Problem: such a classifier will have a very high VC-dimension, and thus has a large capacity
 - It will lead to overfitting
 - Solution: allow for data points to "violate the margin"

SVMs with slack

Instead of requiring that the data is perfectly linearly separable

$$\mathbf{w}^{\mathsf{T}}\mathbf{x}_i + b \ge +1$$
 for $y_i = +1$
 $\mathbf{w}^{\mathsf{T}}\mathbf{x}_i + b \le -1$ for $y_i = -1$

Allow for small violations ξ_i from perfect separation

$$\begin{split} \mathbf{w}^{\mathsf{T}} \mathbf{x}_i + b &\geq +1 - \xi_i \quad \text{for } y_i = +1 \\ \mathbf{w}^{\mathsf{T}} \mathbf{x}_i + b &\leq -1 + \xi_i \quad \text{for } y_i = -1 \\ \xi_i &\geq 0 \quad \forall i \end{split}$$

SVMs with slack

We require that

$$y_i(\mathbf{w}^{\mathsf{T}}\mathbf{x}_i+b) \geq 1-\xi_i, \quad \xi_i \geq 0 \ \forall i$$

\blacksquare ξ_i are called *slack variables*

SVMs with slack

We have to penalize the deviations

$$\arg \min_{\mathbf{w},b} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^N \xi_i$$

s.t. $y_i (\mathbf{w}^\mathsf{T} \mathbf{x}_i + b) - 1 + \xi_i \ge 0$
 $\xi_i \ge 0$

- Maximize the margin while minimizing the penalty for all data points that are not outside the margin
- The weight C allows us to specify a trade-off. Typically determined through cross-validation
- Even if the data is separable, it may be better to allow for an occasional penalty

SVMs with slack

Dual formulation

$$\max \tilde{L}(\alpha) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y_j y_j \left(\mathbf{x}_j^T \mathbf{x}_i\right)$$

s.t. $0 \le \alpha_i \le C$
 $\sum_{i=1}^{N} \alpha_i y_i = 0$

where $\alpha_i \leq C$ is called *box constraint*

The separating hyperplane is given by the N_S support vectors

$$\mathbf{w} = \sum_{i=1}^{N_{\mathsf{S}}} \alpha_i \mathbf{y}_i \mathbf{x}_i$$

1. From Structural Risk Minimization to Linear SVMs

2. Nonlinear SVMs

3. Applications

4. Wrap-Up

Text Classification

- Joachims, T., *Text categorization with Support Vector Machines: learning with many relevant features*, EMCL 1998
- Problem: Classify documents into a number of categories
- The text is represented using word statistics, i.e. histograms of the word frequency
 - We count how often every word occurs and ignore their order ("bag of words")
 - Very high-dimensional feature space (roughly 10,000 dimensions)
 - Very few features that are not relevant (difficult to apply feature selection or dimensionality reduction)

Text Classification

[SVM (poly)					SVM (rbf)			
					degree $d =$				width $\gamma =$				
	Bayes	Rocchio	C4.5	k-NN	1	2	3	4	5	0.6	0.8	1.0	1.2
earn	95.9	96.1	96.1	97.3	98.2	98.4	98.5	98.4	98.3	98.5	98.5	98.4	98.3
acq	91.5	92.1	85.3	92.0	92.6	94.6	95.2	95.2	95.3	95.0	95.3	95.3	95.4
money-fx	62.9	67.6	69.4	78.2	66.9	72.5	75.4	74.9	76.2	74.0	75.4	76.3	75.9
grain	72.5	79.5	89.1	82.2	91.3	93.1	92.4	91.3	89.9	93.1	91.9	91.9	90.6
crude	81.0	81.5	75.5	85.7	86.0	87.3	88.6	88.9	87.8	88.9	89.0	88.9	88.2
trade	50.0	77.4	59.2	77.4	69.2	75.5	76.6	77.3	77.1	76.9	78.0	77.8	76.8
interest	58.0	72.5	49.1	74.0	69.8	63.3	67.9	73.1	76.2	74.4	75.0	76.2	76.1
ship	78.7	83.1	80.9	79.2	82.0	85.4	86.0	86.5	86.0	85.4	86.5	87.6	87.1
wheat	60.6	79.4	85.5	76.6	83.1	84.5	85.2	85.9	83.8	85.2	85.9	85.9	85.9
corn	47.3	62.2	87.7	77.9	86.0	86.5	85.3	85.7	83.9	85.1	85.7	85.7	84.5
microavg.	72.0	79.9	79.4	82.3	84.2	85.1 com	85.9 bined:	86.2 86.0	85.9	86.4 cor	86.5 nbine	86.3 ed: 86	86.2 3.4

Handwritten Digit Classification

U.S. Postal Service Database

TECHNISCHE UNIVERSITAT DARMSTADT

Handwritten Digit Classification

- Human performance: 2.5% error
- Various learning algorithms
 - 16.2%:
 - 5.9%: 2-layer neural network
 - 5.1%: LeNet 1 5-layer neural network
- Various SVM results
 - **4.0%**: Polynomial kernel (p = 3, 274 support vectors)
 - 4.1%: Gaussian kernel ($\sigma = 0.3$, 291 support vectors)

Handwritten Digit Classification

Very little overfitting and good generalization

degree of	dimensionality of	support	raw
polynomial	feature space	vectors	error
1	256	282	8.9
2	pprox 33000	227	4.7
3	$pprox 1 imes 10^6$	274	4.0
4	$\approx 1 \times 10^9$	321	4.2
5	$pprox 1 imes 10^{12}$	374	4.3
6	$pprox 1 imes 10^{14}$	377	4.5
7	$pprox 1 imes 10^{16}$	422	4.5

Handwritten Digit Classification

- To get even better results
 - Supply knowledge about invariances in the data: geometric deformations, etc.
 - 2.7% error: elastic matching (no learning)
 - Use knowledge of how digits can deform
 - Classify test digit by finding the template that required least deformation
- Recent results
 - With more training data, better modeling of invariances, etc.
 - Error down to about 0.5% with SVMs and 0.4% with neural networks

UNIVERSITÄT DARMSTAD

Relevance Vector Machines

- Much sparser results
- No notion of margin maximization

Support Vector Regression

SVMs can also be adapted to regression tasks

1. From Structural Risk Minimization to Linear SVMs

2. Nonlinear SVMs

3. Applications

4. Wrap-Up

4. Wrap-Up

You know now

- What the main idea behind SVMs is
- Why maximizing the margin is a good idea
- How to translate the SVM problem into a quadratic optimization problem
- How to interpret the support vectors
- How to use SVMs for data that is not linearly separable
- What the kernel trick is
- How to construct kernels
- How to formulate SVMs with slack variables

K. Kersting based on Slides from J. Peters • Statistical Machine Learning • Summer Term 2020 57 / 59

Self-Test Questions

TECHNISCHE UNIVERSITAT DARMSTADT

- How did learning theory motivate support vector machines?
- What does maximum margin separation mean?
- Why did the SVM-craze drown the Neural-Networks-craze?
- What is a Kernel?
- How does a Kernel relate to features?
- How can I build Kernels from Kernels?
- What functions does the Radial Basis Function Kernel contain?
- How does support vector regression work?

Reading Assignment for next lecture

Bishop 6.1, 6.3, 6.4