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Today’s Objectives

Make you understand how to use kernels for regression both
from a frequentist and Bayesian point of view

Covered Topics
Why kernel methods?

Radial basis function networks

What is a kernel?

Dual representation

Gaussian Process Regression

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 2 / 71



Outline

1. Kernel Methods for Regression

2. Gaussian Processes Regression

3. Bayesian Learning and Hyperparameters

4. Wrap-Up
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1. Kernel Methods for Regression

Why Kernels and not Neural Networks?

Multi-Layer Perceptrons use univariate projections to “span” the
space of the data (like an “octopus”)

y = g (wᵀx)
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1. Kernel Methods for Regression

Why Kernels and not Neural Networks?

Pros
Universal function
approximation

Large range
generalization
(extrapolation)

Good for high
dimensional data

Cons
Hard to train

Danger of interference
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1. Kernel Methods for Regression

Radial Basis Function Networks

Use spatially
localized
kernels for
learning

Note: there are
other basis
functions that
are not spatially
localized
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1. Kernel Methods for Regression

Radial Basis Function Networks

For instance with Gaussian kernels

φ (x, ck) = exp

(
−
1
2

(x − ck)ᵀ D (x − ck)
)

with D positive definite
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1. Kernel Methods for Regression

Radial Basis Function Networks

The “output layer” is just a linear regression

Often needs regularization (e.g., ridge regression)

J =
1
2
(t − y)ᵀ (t − y) = 1

2
(t −Φw)ᵀ (t −Φw)

t =


t1
t2
...
tn

 , Φ =


φ11 φ12 . . . φ1m
φ21 φ22 . . . φ2m
. . . . . . . . . . . .
φn1 φn2 . . . φnm


w = (ΦᵀΦ)−1Φᵀt

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 9 / 71



1. Kernel Methods for Regression

Radial Basis Function Networks

The “input layer” can be optimized by gradient descent with
respect to distance metric and centers of RBFs

∂J

∂ck
= (t − y)

(
−
∂y

∂ck

)
= − (t − y) wk

(
∂Φ

∂ck

)
∂J

∂Dk
= (t − y)

(
−
∂y

∂Dk

)
= − (t − y) wk −

∂Φ

∂Dk
∂Φ

∂ck
=

∂

∂ck
exp

(
−
1

2
(x − ck)ᵀ D (x − ck)

)
∂Φ

∂Dk
=
∂

∂Dk
exp

(
−
1

2
(x − ck)ᵀ Dk (x − ck)

)

= exp

(
−
1

2
(x − ck)ᵀ D (x − ck)

)
(x − ck)ᵀ D = exp

(
−
1

2
(x − ck)ᵀ Dk (x − ck)

)
(x − ck)ᵀ

(x − ck)

Gradient descent can make D non positive definite =⇒ use
Cholesky Decomposition

An iterative procedure is needed to for optimization, i.e.,
alternate update of w and update of ck and Dk
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1. Kernel Methods for Regression

Radial Basis Function Networks

Sensitivity to kernel width (bandwidth, dist. metric) of
φ (x, ck) = exp

(
− 1
2 (x − ck)2 h

)
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1. Kernel Methods for Regression

Radial Basis Function Networks

Sensitivity to number of kernels and metric of
φ (x, ck) = exp

(
− 1
2 (x − ck)2 h

)
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1. Kernel Methods for Regression

Radial Basis Function Networks

Benefits of center and metric adaptation
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1. Kernel Methods for Regression

Radial Basis Function Networks

All adaptations turned on

Note: RBF tend to grow wider with a lot of overlap, and learning
rates are sensitive
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1. Kernel Methods for Regression

Radial Basis Function Networks - Summary

RBFs are a powerful and efficient learning tool

Number of RBFs and hyperparameter optimization is important
and a bit difficult to tune

Theoretical remark
Poggio and Girosi (1990) showed that RBF networks arise
naturally from minimizing the penalized cost function

J =
1
2

∑
n

(tn − y (xn))2 + 1
2
γ

∫
|G (x)|2 dx

with, e.g., G (x) = ∂2y
∂x2 , a smoothless prior
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1. Kernel Methods for Regression

Kernel Methods in General

What is a kernel?
Most intuitive approach for a fixed nonlinear feature space: an
inner product of feature vectors

k
(
x, x′

)
= φ (x)ᵀ φ

(
x′
)

A kernel is symmetric

k
(
x, x′

)
= k

(
x′, x

)
Examples

Stationary kernels: k (x, x′) = k (x − x′)

Linear kernel: k (x, x′) = xᵀx′

Homogeneous kernels: k (x, x′) = k (‖x − x′‖)
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1. Kernel Methods for Regression

Dual Representation of Linear Regression

The dual representation gives natural rise to the kernel functions

J (w) =
1
2

N∑
n=1

(wᵀφ (xn)− tn)2 +
λ

2
wᵀw, where λ ≥ 0

∂J (w)
∂w

=
N∑
n=1

(wᵀφ (xn)− tn)φ (xn) + λw = 0

w = −1
λ

N∑
n=1

(wᵀφ (xn)− tn)φ (xn) =
N∑
n=1

anφ (xn) = Φᵀa

where Φ = [φ (x1)
ᵀ . . . φ (xN)

ᵀ] ∈ RN×D

Thus, w is a linear combination of φ (xn)

The dual representation focuses on solving for a, and not w
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1. Kernel Methods for Regression

Dual Representation of Linear Regression

Insert the dual representation into the cost function

J (w) =
1
2

N∑
n=1

(wᵀφ (xn)− tn)2 +
λ

2
wᵀw

J (a) =
1
2

N∑
n=1

(aᵀΦφ (xn)− tn)2 +
λ

2
aᵀΦΦTa

=
1
2

N∑
n=1

aᵀΦφ (xn)φ (xn)ᵀ a+
1
2

N∑
n=1

t2n −
N∑
n=1

aᵀΦφ (xn) tn +
λ

2
aᵀΦΦTa

=
1
2
aᵀ ΦΦᵀ︸︷︷︸

K

ΦΦᵀa+
1
2
ttt − aᵀΦΦᵀt +

λ

2
aᵀΦΦTa

=
1
2
aᵀKKa+

1
2
ttt − aᵀKt +

λ

2
aᵀKa

K = ΦΦᵀ is the Gram Matrix, and Kij = φ (xi)ᵀ φ
(
xj
)
= k

(
xi, xj

)
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1. Kernel Methods for Regression

Dual Representation of Linear Regression

Solve the dual problem for a

J (a) =
1
2
aᵀKKa+

1
2
ttt − aᵀKt + λ

2
aᵀKa

∂J (a)
∂a

= KKa− Kt + λKa = K (Ka− t + λa) = 0

a = (K + λI)−1 t

Side note: since by definition of a kernel matrix, K is Positive
Semi-Definite, K−1 exists
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1. Kernel Methods for Regression

Dual Representation of Linear Regression

Compute the prediction as

y (x) = wᵀφ (x) = aᵀΦφ (x) = k (x)ᵀ (K + λI)−1 t

where k (x) = [k (x, x1) . . . k (x, xN)]ᵀ

All computations can be expressed in terms of the kernel
function k
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1. Kernel Methods for Regression

Pros and Cons of the Dual Representation

Cons
Need to invert a N × N matrix

Pros
Can work entirely in feature space with the help of kernels

Can even consider infinite feature spaces, as the kernel function
does only have the inner product of feature vectors, which is a
scalar, even for infinite feature spaces

Many novel algorithms can be derived from the dual
representation

Many old problems of RBFs (how many kernels, which metric,
which centers) can be solved in a principled way

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 21 / 71



1. Kernel Methods for Regression

Some Useful Kernels

Polynomial kernels
E.g., 2nd order: k(x, z) = (xᵀz)2

N-th order with offset: k(x, z) = (xᵀz + c)N

Gaussian Kernel (also called Radial Basis Function - RBF)

k
(
x, x′

)
= exp

(
− 1
2σ2

∥∥x − x′∥∥2)
Arises from a feature space with an INFINITE number of radial
basis functions∫ +∞

−∞
exp

(
− 1
2σ2
‖x − x′‖2

)
exp

(
− 1
2σ2
‖x̃ − x′‖2

)
dx̃

∝ exp

(
− 1
2σ2
‖x − x′‖2

)
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2. Gaussian Processes Regression
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2. Gaussian Processes Regression

Dual Representation of Linear Regression

Classical linear (ridge/regularized) regression

y (x) = wᵀφ (x)

w = (ΦᵀΦ+ λI)−1Φᵀt
t = y + ε, ε ∼ N (0, λ)

Dual representation of linear regression

y (x) = aᵀk (x)

a = (K + λI)−1 t

k (x) =
[
k (x, x1) . . . k (x, xn)

]ᵀ
k
(
xi, xj

)
= φ (xi)ᵀ φ

(
xj
)

t = y + ε, ε ∼ N (0, λ)
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2. Gaussian Processes Regression

Bayesian Linear Regression Revisited

Regression model
y(x) = wᵀφ(x)

Parameter Distribution

p(w) = N
(
w
∣∣∣0,α−1I)

Thus, for any w , one particular function of x is defined

The distribution over w thus induces a distribution over functions

Goal: evaluate the function at some values of x, e.g., the training
set x1, . . . , xn

y = Φw

and predict the joint probability p(y1, . . . , yn)
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2. Gaussian Processes Regression

Bayesian Linear Regression Revisited

y = Φw p (w) = N
(
w
∣∣∣0, α−1I)

y is a linear combination of Gaussian random variables, and thus
Gaussian itself

To obtain the joint distribution of all y, we only need the mean
and covariance

E {y} = E {Φw} = ΦE {w} = 0

cov {y} = E {yyᵀ} = ΦE {wwᵀ}Φᵀ =
1
α
ΦΦᵀ = K

where Kij = k
(
xi, xj

)
=
1
α
φ (xi)ᵀ φ

(
xj
)
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2. Gaussian Processes Regression

Gaussian Processes

A Gaussian Process (GP) is a probability distribution over
functions y(x), such that any finite set of function values y(x)
evaluated at inputs x1, . . . , xn is jointly Gaussian distributed

A Gaussian Process over n variables y1, . . . , yn is completely
specified by the 2nd order statistics, i.e., mean and covariance

Rasmussen and Williams, 2006, Gaussian
Processes for Machine Learning (http:
//www.gaussianprocess.org/gpml/)

Good introduction to GPs by Carl Rasmussen:
http://videolectures.net/
mlss09uk_rasmussen_gp/
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2. Gaussian Processes Regression

Gaussian Processes

A GP is fully specified by a mean function and a covariance
function (kernel)

Prior mean function: expected function before observing any data

Covariance function: encodes some structural assumptions (e.g.,
smoothness) (e.g., multivariate Gaussian kernel)

Most applications assume the prior mean of y to be zero
Corresponds to a mean-zero prior of w

Thus, a GP is completely defined by

E {y} = E {Φw} = ΦE {w} = 0
E
{
y (xi) y

(
xj
)}

= k
(
xi, xj

)
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2. Gaussian Processes Regression

GPs - Different Covariance Functions

k
(
xi, xj

)
= exp

(
−

1
2σ2

∥∥xi − xj∥∥2)
Gaussian/RBF Kernel

k
(
xi, xj

)
= exp

(
−θ
∥∥xi − xj∥∥)

Ornstein-Uhlenbeck Process
(Brownian Motion)
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2. Gaussian Processes Regression

GPs for Regression

Generative model: tn = y (xn) + ε

Noise model: p (tn | yn) = N
(
tn
∣∣∣ yn, β−1)

Prior distribution over function values: p (y) = N
(
y
∣∣∣ 0,K)

The kernel function that determines K is typically chosen to
express the property that, for similar points xn and xm the
corresponding values y(xn) and y(xm) will be more strongly
correlated than for dissimilar points. The definition of similarity
depends on the application
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2. Gaussian Processes Regression

GPs for Regression - Sampling Example

Illustration of the sampling of
data points tn from a GP. The
blue curve shows a sample
function y from the GP
posterior over functions. The
red points show the values of
yn obtained by evaluating the
function at a set of input
values xn. The corresponding
values of tn, shown in green,
are obtained by adding
independent Gaussian noise to
each of the yn
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2. Gaussian Processes Regression

Inferring Functions with GPs

Prior over functions (GP): p (y)

Likelihood (measurement/noise model): p (t | y)

Posterior over functions via Bayes theorem

p (y|t) = p (t|y)p (y)
p (t)
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2. Gaussian Processes Regression

GPs Regression - Prediction for New Data Points

Training set

tn = (t1, . . . , tn)
ᵀ with corresponding x1, . . . , xn

Predict tn+1 for xn+1

Approach: evaluate the predictive distribution

p
(
tn+1

∣∣∣ xn+1, t1:n, x1:n

)
For the derivation, remember that GPs assume that
p (t1, t2, . . . , tn, tn+1) is jointly Gaussian

Therefore, the conditional distribution p
(
tn+1

∣∣∣ xn+1, t1:n, x1:n

)
is

also Gaussian distributed
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2. Gaussian Processes Regression

Gaussian Conditioning

Assume x is Gaussian distributed and it can be partitioned in two
disjoint subsets xa and xb. We can rewrite the distribution in
terms of the mean and covariance matrices of xa and xb

p (x) = N
(
x
∣∣∣µ,Σ)

x =

[
xa
xb

]
, µ =

[
µa
µb

]
, Σ =

[
Σaa Σab
Σba Σbb

]
The conditional distribution is also Gaussian

p (xa | xb) = N
(
xa
∣∣∣µa|b,Σa|b

)
µa|b = µa +ΣabΣ

−1
bb (xb − µb)

Σa|b = Σaa −ΣabΣ
−1
bb Σba
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2. Gaussian Processes Regression

Gaussian Conditioning and Marginalization

With Gaussian distributions the following holds

p (x, y) ∼ N
⇓

p (x | y) ∼ N
p (y | x) ∼ N
p (x) ∼ N
p (y) ∼ N
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2. Gaussian Processes Regression

GPs Regression - Prediction for New Data Points

p (tn+1) = N
(
tn+1

∣∣∣0, Cn+1

)
Cn+1 =

(
Cn k
k c

)
where

k =
[
k (x1, xn+1) . . . k (xn, xn+1)

]ᵀ
c = k (xn+1, xn+1) + β−1

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 36 / 71



2. Gaussian Processes Regression

GPs Regression - Prediction for New Data Points

Prediction Equations

m (xn+1) = kᵀC−1N t

σ2 (xn+1) = c − kᵀC−1N k

Example of Sinusoidal Data Set (green: true function; blue: noisy
data; red: GPR predictive mean; shaded: ±2σ)

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 37 / 71



2. Gaussian Processes Regression

GPs Regression - Notes

Interpretation as RBFs

m(xn+1) = kᵀC−1N t =
N∑
n=1

ank(xn, xn+1)

Computational Complexity
For building the model: O(N3)

For prediction of one function value: O(N2) (for the variance)

Key advantage of GPR: non-parametric and probabilistic
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2. Gaussian Processes Regression

GPs Regression - Notes

Naive methods can deal with ∼ 10.000− 20.000 data points

Advanced methods (e.g., Sparse GPs) for more than 50.000 data
points

IMPORTANT: Hyperparameter optimization (parameters of the
kernel / covariance function). E.g., for squared-exponential
kernel

k
(
xi, xj

)
= σ2f exp

(
− 1
2l2
(
xi − xj

)2)
+ σ2nδij

where σ2f is the signal variance, l is the length-scale and σ
2
n is

the noise variance
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2. Gaussian Processes Regression

GPs - Summary

GPs are a Bayesian approach to regression with possibly infinite
feature spaces

Resulting prediction equations are very straightforward and
obtained in closed-form because of the Gaussian properties

Hyperparameter optimization more complex and expensive

While GP for Regression is computationally very expensive, it is
one of the most principled approaches to statistical learning for
regression
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3. Bayesian Learning and Hyperparameters
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3. Bayesian Learning and Hyperparameters

Bayesian Learning - Pros

Bayesian methods are a superset of many learning methods

Regularization is a natural consequence

No need for splitting into training and test sets

Confidence intervals and error bars can be obtained

Regularization can be obtained automatically

Model comparison

Active learning (determine where to sample next)

Automatic relevance detection (which inputs are important)

Black-box learning approaches

Theoretically among the most powerful method
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3. Bayesian Learning and Hyperparameters

Bayesian Learning - Cons

Requires to choose prior distributions, mostly based on analytical
convenience rather than real knowledge about the problem

Computationally intractable
Posterior probabilities involve the computation of an integral

p (θ | x) = p (x|θ) p (θ)
p (x)

=
p (x|θ) p (θ)∫
p (x, θ) dθ

=
p (x|θ) p (θ)∫
p (x | θ) p (θ) dθ

On the contrary, in non-Bayesian statistics we estimate
parameters with maximum likelihood estimation. MLE is usually
easier because it involves finding the maximum of the likelihood
function, for which you can still use gradient descent, if there is
no analytical solution
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3. Bayesian Learning and Hyperparameters

Bayesian Learning - Key Issues

All parameters are treated probabilistically, i.e., avoid “point
estimates”

The probabilistic treatment allows integrating out all unknown
parameters

The problem of infinite regress?
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3. Bayesian Learning and Hyperparameters

Bayesian Learning - Key Issues

Quantities of most interest in Bayesian approaches
Model Evidence

p (D) =
∫
p (D, θ) dθ =

∫
p (D | θ) p (θ) dθ

Posterior of parameters

p (θ | D) = p (D | θ) p (θ)
p (D)

Predictive distribution

p (x | D) =
∫
p
(
x, θ

∣∣∣ θ) dθ
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3. Bayesian Learning and Hyperparameters

The Philosophy of Bayesian Model Selection

Due to probability measure, models can be compared using the
evidence

Complex models have lower probability density over large
range of data sets

Simple models have high probability density over a small
range of data sets

Thus, there should be a compromise in terms of complexity
and confidence in the model

p
(
Mi
∣∣∣D) =

p
(
D
∣∣∣Mi) p (Mi)∑

j p
(
D
∣∣∣Mj) p (Mj)
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3. Bayesian Learning and Hyperparameters

Why the Evidence Achieves Regularization

Approximate evidence in a one parameter scenario

p (D) =

∫
p (D | w) p (w)dw ≈ p

(
D
∣∣∣wMAP) ∆wposterior

∆wprior

ln p (D) ≈ ln p
(
D
∣∣∣wMAP)+ ln

(
∆wposterior

∆wprior

)

Note that the 2nd term penalizes the model complexity
according to how finely the posterior is tuned
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3. Bayesian Learning and Hyperparameters

Why the Evidence Achieves Regularization

For M parameters

ln p (D) ≈ ln p
(
D
∣∣∣wMAP)+ M ln

(
∆wposterior

∆wprior

)

The penalty increases with the number of parameters
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3. Bayesian Learning and Hyperparameters

Bayesian Learning

Parameters are modeled by probability distributions

The conditional distribution of a new data point x given the
training data D can be written as the marginalized joint
distribution

p (x | D) =
∫
p (x,w | D) dw =

∫
p (x | D,w) p (w | D) dw

=

∫
p (x | w) p (w | D) dw

Hence the Bayesian approach performs a weighted average over
all values of w

K. Kersting based on Slides from J. Peters · Statistical Machine Learning · Summer Term 2020 49 / 71



3. Bayesian Learning and Hyperparameters

Bayesian Learning

Connection to maximum likelihood estimation

p (x | D) =
∫
p (x | w,D) p (w | D) dw

≈ p (x | ŵ,D)
∫
p (w | D) dw︸ ︷︷ ︸

=1

= p (x | ŵ,D)

The approximation usually holds for sufficiently many training
data points
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3. Bayesian Learning and Hyperparameters

Bayesian Learning

How to perform Bayesian Updates

p (w | D) =
p (D | w) p (w)

p (D)
=
p (w)

p (D)

N∏
n=1

p
(
xn
∣∣∣D)

p (D) =

∫
p
(
w′
) N∏
n=1

p
(
xn
∣∣∣w′)dw′

To obtain predictions, one has to evaluate the integrals

p (D) =

∫
p
(
w′
) N∏
n=1

p
(
xn
∣∣∣w′)dw′

p (x | D) =

∫
p (x | w) p (w | D)dw

Generally this is a very complex computation

Analytical solutions exist only if the posterior has the same
parametric form as the prior (conjugate priors, reproducing
densities)
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3. Bayesian Learning and Hyperparameters

Example - Bayesian Density Estimation with a
Gaussian

Determine the mean of the Gaussian by Bayesian Learning

Prior: p0 (µ) =
1√
2πσ20

exp

(
− (µ− µ0)2

2σ20

)

Gaussian model: p (x | µ) =
1√
2πσ2

exp

(
− (x − µ)2

2σ2

)

pN (µ | X) =
p0 (µ)

p (X)

N∏
n=1

p
(
xn | µ

)
We get a Gaussian posterior with parameters

µN =
Nσ20

Nσ20 + σ2
x̄ +

σ20
Nσ20 + σ2

µ0,
1
σ2N

=
N
σ2

+
1
σ20
, x̄ =

1
N

N∑
i=1

xn
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3. Bayesian Learning and Hyperparameters

Example - Bayesian Density Estimation with a
Gaussian

Evolution of the posterior probability of the mean (blue) with
increasing number of data points (red)
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3. Bayesian Learning and Hyperparameters

Bayesian Learning

Assume probability distribution over network weights and some
prior

Need to interpret outputs probabilistically

Bayesian Learning Procedure
Start with prior distribution p(w) and choose appropriate
parameters (usually broad distribution to reflect uncertainty)

Observe data, compute posterior of parameters with Bayes rule

Continue updating if more data comes in, replacing the prior with
the posterior

In order to make a prediction, the expectation given the posterior
distribution has to be found (might be very complex)
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3. Bayesian Learning and Hyperparameters

Gaussian Priors

As usual, Gaussian priors are most convenient to deal with (for
real numbers), although they may be unrealistic

p0 (w) =
1√
2πσ20

exp

(
− (w − w0)2

2σ20

)

More generally ...

p (w) =
1

Zw (α)
exp (−αEw)

where

Zw (α) =

∫
exp (−αEw)dw =

(
2π
α

)W/2
Ew =

1
2
‖w − w0‖2 =

1
2

w∑
i=1

(wi − w0,i)2 , Ew =
1
2
‖w‖2 =

1
2

W∑
i=1

w2i

α is a hyperparameter
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3. Bayesian Learning and Hyperparameters

Example - Logistic Regression

pN (w | D) =
p0 (w)
p (D)

N∏
n=1

p (tn | w)

Prior: p (w) = exp
(
−α
2
‖w‖2

)
/

(
2π
α

)W/2
Likelihood: p

(
tn
∣∣∣w) = y (x,w) =

1
1+ exp (−wᵀx)

p (D) =
∫
y (x,w) p (w) dw

Note: p(D) is difficult to estimate, but we do not need it as long
as we do not attempt model comparison, since it is only a
scaling factor
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3. Bayesian Learning and Hyperparameters

Example - Logistic Regression

Consider the data set

X =


5 5
−5 −5
0 1
−1 0

 , T =


1
0
0
1


Use only two data points

α = 0.1 α = 0.01
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3. Bayesian Learning and Hyperparameters

Example - Logistic Regression

Use all data points

α = 0.1 α = 0.01
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3. Bayesian Learning and Hyperparameters

Gaussian Noise Models

Make Gaussian Assumption for Likelihood

p (D | w) = 1
ZD (β)

exp (−βED)

where ZD (β) =
∫

exp (−βED)

For instance, for regression assume

p
(
t
∣∣∣ x,w) ∝ exp

(
−1
2
β (y (x,w)− t)2

)
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3. Bayesian Learning and Hyperparameters

Gaussian Noise Models

Posterior Distributions of Weights
Since all distributions are Gaussian, the posterior must be
Gaussian and can be written as

p (w | D) = 1
ZS

exp (−βED − αEW ) =
1
ZS

exp (−S (w))

where ZD (α, β) =
∫

exp (−βED − αEW ) dw

What is the parameter vector maximizing the posterior? This can
be achieved by minimizing

S (w) =
β

2

N∑
n=1

(y (xn;w)− tn)2 + α

2

W∑
i=1

w2i
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3. Bayesian Learning and Hyperparameters

Gaussian Approximation of Posterior
Distribution

Assume that there is an analytically intractable distribution
E.g., after obtaining the posterior of the parameters, the
likelihood of the model may be desirable

p (y | D) =
∫
p (y | w) p (w | D) dw

E.g., the posterior is required in Gaussian form

Way out: e.g., approximate the intractable distribution with a
Gaussian
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3. Bayesian Learning and Hyperparameters

Laplace Approximation

Assume the generic probability distribution

p (z) =
1
Z
f (z) , with Z =

∫
f (z) dz

Goal: Approximate p (z) with a Gaussian distribution, centered at
the mode z0

df (z)
dz

∣∣∣∣
z=z0

We get a 2nd order Taylor series expansion

ln f (z) ≈ ln f (z0)−
1
2

(
− d

2

dz2
ln f (z)

∣∣∣∣
z=z0

)
(z − z0)2
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3. Bayesian Learning and Hyperparameters

Laplace Approximation

Taking the exp we get

f (z) ≈ f (z0) exp

(
−1
2
A (z − z0)2

)
q (z) ≈

(
A
2π

)1/2
exp

(
−1
2
A (z − z0)2

)
For the multivariate case

ln f (z) ≈ ln f (z0)− 1
2

(z − z0)ᵀ A (z − z0)

A = −∇∇ ln f (z)
∣∣∣∣
z=z0

f (z) ≈ f (z0) exp

(
−1
2

(z − z0)ᵀ A (z − z0)
)

q (z) ≈

(
|A|

(2π)M

)1/2
exp

(
−1
2

(z − z0)ᵀ A (z − z0)
)

= N
(
z
∣∣∣ z0,A−1)
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3. Bayesian Learning and Hyperparameters

Laplace Approximation

Illustration for approximation of logistic regression

Statistical Machine Learning
Lecture 13: Kernel Regression and Gaussian Processes

Jan Peters
TU Darmstadt

Summer Semester 2019

Jan Peters · Statistical Machine Learning · Summer Semester 2019 1 / 67
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3. Bayesian Learning and Hyperparameters

Dealing with Hyperparameters

Augment Framework to also model the hyperparameters
probabilistically

p (w | D) =

∫ ∫
p
(
w, α, β

∣∣∣D)dαdβ
=

∫ ∫
p
(
w
∣∣∣α, β,D) p(α, β ∣∣∣D)dαdβ

Assuming a sharp peak of the distributions of the hyperparameters

p (w | D) ≈ p
(
w
∣∣∣D, αMP, βMP)∫ ∫ p

(
α, β

∣∣∣D)dαdβ = p
(
w
∣∣∣D, αMP, βMP)

These assumptions offer the possibility to first find the
hyperparameters that maximize the posterior, and then perform the
remaining calculations with these optimized hyperparameters

Note that there are also other methods to obtain the
hyperparameters
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3. Bayesian Learning and Hyperparameters

Hyperparameters in Gaussian Processes

What are the hyperparameters in GPs?
E.g, exponential-quadratic kernel

k (xn, xm) = θ0 exp

(
−θ1
2
‖xn − xm‖2

)
+ θ2 + θ3xᵀn xm

Approach: optimize the evidence w.r.t. the hyperparameters

p (t) =

∫
p (t | y) p (y)dy = N

(
t
∣∣∣ 0, C)

with C (xn, xm) = k (xn, xm) + β−1δnm

E.g., by gradient descent

∂

∂θi
log p (t | θ) = −1

2
Tr
(
C−1n

∂Cn
∂θi

)
+
1
2
tᵀC−1n

∂Cn
∂θi

C−1n t
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3. Bayesian Learning and Hyperparameters

Hyperparameters - Summary

Bayesian learning offers an automatic way of regularization and
meta-parameter tuning

The evidence framework for model selection offers a principled
tool to compare different learning systems

Most of the time, Bayesian learning is analytically intractable

Approximation methods exist to deal with the intractable
components (Bayesian “hacking”)
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4. Wrap-Up

Outline

1. Kernel Methods for Regression

2. Gaussian Processes Regression

3. Bayesian Learning and Hyperparameters

4. Wrap-Up
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4. Wrap-Up

4. Wrap-Up

You know now:
What RBF Networks are

What Kernels are, how to construct them and why they are
beneficial

How to derive the dual formulation of linear regression, and what
are its pros and cons

What GPs are, and the assumptions behind them

With GPs we can predict the value for a new point in closed form,
because of the Gaussian conditionals

Doing regression with GPs we get a mean value and a variance
(uncertainty) of the estimate

Generally methods with kernels do not scale well with data

The ideas behind Bayesian Learning, its pros and cons
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4. Wrap-Up

Self-Test Questions

Why kernel methods for regression?

How do you get from radial basis functions to kernels?

What is the role of the two pseudo-inverses in kernel regression?

Why are kernel regression methods very computationally
expensive?

Why is kernel regression the dual to linear regression?

What is the major advantage of GPs over Kernel Ridge Regression?

Why are GPs a Bayesian approach?

What principle allowed deriving GPs from a Bayesian regression
point of view?

How to get the hyperparameters in a Bayesian setup?
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4. Wrap-Up

Extra Material & Homework

Extra material
Goertler, et al., "A Visual Exploration of Gaussian Processes",
Distill, 2019 (https://distill.pub/2019/
visual-exploration-gaussian-processes/)

Reading Assignment for next lecture
Bishop 8
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