Three Parts

1. What are Artificial Intelligence,
Machine Learning, and Deep
Learning?

2. Deep Learning

3. Probabilistic Circuits and the
Automated Scientist
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} A Short History of T'.ne @
[ - 1 Artificial Intelligence, Machine
\— Learning, and Deep Learning

]‘ ‘l Thanks to Christoph Lampert and Constantin Rothkopf for some of the slides
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Solving Rubik‘s Cube?

OpenAl: https://www.youtube.com/watch?v=x40O8pojMFQOw



https://www.youtube.com/watch?v=x4O8pojMF0w

Your turn!

What do you think? Is this Al? Is this
just Machine Learning? Is this at the
level of humans? Is this overselling?

You have 5 minutes!



The dream of an artificially
Intelligent entity is not new
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The dream of an artificially
intelligent entity i not new

“Jintelligence‘ (Al). In"ordento.prove the

% impossibility of thinking machines, Leibniz

‘é imagines of a machine from whose structure
29l certain thoughts, sensations, perceptions
'_emerge“ __ Gero von Randow, ZEIT 44/2016




Al tOday
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Al today

THE ECONOMIC IMPRCT OF

ARTIFICIAL INTELLIGENCE
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So, Al has many faces
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But, what
exactly is Al?



Your turn!

What do you think is Al?

You have 5 minutes!



Humans are
considered
to be smart

https://www.youtube.com/watch?v=
XQ79UUI0eWc



https://www.youtube.com/watch?v=XQ79UUIOeWc

Are flies smart?




What about orangutans”



Intelligence has
many qualities.

)= Itis difficult to directly
capture/measure it.




The
Definition of Al

,,the science and engineering of
making intelligent machines,
especially intelligent computer

programs.

It is related to the similar task of
using computers to understand

human intelligence, but Al does

not have to confine itself to

methods that are biologically
observable.*

- John McCarthy, Stanford (1956),
coined the term Al, Turing Awardee




Turing Award =
Nobel Prize for Computing

ACM
A.M. TURING AWARD

Named after Alan Turing, a British mathematician at
the University of Manchester. Turing is often
credited as being the key founder of theoretical
computer science and Al.



Al wants to build intelligent computer
programs. How do we do this?

We use algorithms:
unambiguous specifications
of how to solve a class of
problems — in finite time.
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Always follow the N I —
right-hand path. If you =
reach a dead-end, go 'L;qx\ 5=
back to the last choice N I
point and take the next f \/ }'
unexplored path to the a4
right.

lllustration Nanina Fdhr



t as a recipe

Think of



Learning Thinking

Al = Algorithms for ...

Behaviour jaElellgle




Machine
Learning

the science "concerned with
the question of how to
construct computer programs
that automatically improve with

experience” .
- Tom Mitchell (1997) CMU § &
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a form of machine
learning that makes
use of artificial
neural networks

Geoffrey Hinton Yann LeCun Yoshua Bengio

Google Facebook (USA) Univ. Montreal (CAN)  Turing Awardees 2019
Univ. Toronto (CAN)




Overall Picture

Deep Machine Artificial

Learning Learning Intelligence




Your turn?

Which examples for Al do you know?
Where do you think ML is used? Do
you know an example for ML that is
not DL?

You have 5 minutes!



A closer look at
the history of Al

ONEE



1956 Birth of Al

A Proposal for the

DARTMOUTH SUMMER RESEARCH PROJECT ON ARTIFICIAL INTELLIGENCE

We propose that a 2 month, 10 man study of artificial intelligence be
carried out during the summer of 1956 at Dartmouth College in Hanover, New
Hampshire. The study is to proceed on the basis of the conjecture that every
aspect of learning or any other feature of intelligence can in principle be so pre-

cisely described that a machine can be made to simulate it. An attempt will be

made to find how to make machines use language, form abstractions and concepts,

solve kinds of problems now reserved for humans, and improve themselves. We

think that a significant advance can be made in one or more of these problems if

a carefully selected group of scientists work on it together for a summer.

Turing Award 1971

Marvin Minsky
Turing Award 1969

Allen Newell
Turing Award 1975

Herbert A. Simon
Turing Award 1975
Nobel Prize 1978

... and of
Cognitive Science



Artificial Neural Networks

COGNITIVE SCIENCE 14, 179-211 (1990)

Learning representations Finding Structure in Time

by back-propagating errors COGNITIVE SCIENCE 9, 147-169 (1985)
JEFFREY L. ELMAN
University of California, San Diego

David E. Rumelhart*, Geoffrey E. Hintont
& Ronald J. Williams*

A Learning Algorithm for
Boltzmann Machines*

* Institute for Cognitive Science, C-015, University of California,
San Diego, La Jolla, California 92093, USA

t Department of Computer Science, Carnegie-Mellon University,
Pittsburgh, Philadelphia 15213, USA

DAVID H. ACKLEY
GEOFFREY E. HINTON

Computer Science Department
Carnegie-Mellon University

TERRENCE J. SEJNOWSKI

Biophysics Department
The Johns Hopkins University

(B:iotl)%giéailiu
_n{,__{r}exci) Biol. Cybernetics 36, 193-202 (1980)

Neocognitron: A Self-organizing Neural Network Model
for a Mechanism of Pattern Recognition
Unaffected by Shift in Position

Kunihiko Fukushima

NHK Broadcasting Science Research Laboratories, Kinuta, Setagaya, Tokyo, Japan

Pyychological Review

Copyrght 1981 by the Amercan Pyychological Assocmtion, Inc
1981, Vol 83, No 2, 135170 i)

13.295X /%1 /8802013530075

Toward a Modern Theory of Adaptive Networks:
Expectation and Prediction

Psychological Review
Vol. 6S, No. 6, 1958
THE PERCEPTRON: A PROBABILISTIC MODEL FOR

\§ " T ; T N Richard S. Sutton and Andrew G. Barto
INFORMATION S'II‘SR?IC_;IE, ‘SEI‘\)H\?,RGA:\ IZATION (!;mgulcr and Information Science Dc;:arlmcm

University of Massachusetts—Ambherst
F. ROSENBLATT

Cornell Aeronautical Laboralory




Artificial Neural Networks
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slide after C. Rothkopf (TUD), after J.Tenenbaum (MIT)



Algorithms of intelligent behaviour
teach us a lot about ourselves

TSI S P PR L~ .

The twin science: cognitive science
"How do we humans get so much from so little?" and by that
| mean how do we acquire our understanding of the world

given what is clearly by today's engineering standards so little
data, so little time, and so Ilttle energy.

: -
o= - e £ H a% 2%
Centre for Cognitive Science at TU Darmstadt

| Establishing cognitive science at the Technische Universitat Darmstadt is a long-term commitment across
'} multiple departments (see Members to get an impression on the interdisciplinary of the supporting groups m
and departments). The TU offers a strong foundation including several established top engineering groups in

* Germany, a prominent computer science department (which is among the top four in Germany), a

".' ~ t—‘_ o4

Josh Tenenbaum, MIT

- 5

eeeeee

Lake, Salakhutdinov, Tenenbaum, Science 350 (6266), 1332-1338, 2015
Tenenbaum, Kemp, Griffiths, Goodman, Science 331 (6022), 1279-1285, 2011




Three levels

Computational

Of descripticn Why do things work the = maximize:
way they work? Whatis R =r,_, +7r

r+1 t+2

g bl Y
the goal of the

VISION computation? What are

the unifying principles?

Algorithmic

What represetation can

implement such
DevidiMar computations? How does D)
the choice of the
representation determine
the algorithm

1982

Implementational » ad oL
How can such a system  # @#r i i St i
be built in hardware? R

How can neurons carry
out the computations?

slide after C. Rothkopf (TUD)
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Artificial Neural Networks
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Inspiration from the brain:

¢ many small interconnected units (neurons)
e learning happens by changing the

strength of connections (synapses)
Frank

Rosenblatt
the sum of the parts
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e behavior of the whole is more than
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The Perceptron to
distinguish As an Bs

1) present pattern

output neuron
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2) some first layer neurons spike
layer of neurons

3) output neuron accumulates
signals from previous layer; if it is
above a threshold, the output
neuron spikes and predicts an A; if
not, then it does not spikes and
predicts a b

4) prediction is “B”

input pattern




The Perceptron
Learning Algorithm

1) present pattern
2) wait for output to be produced  connections
3) if output correct

* change nothing
layer of neurons

output neuron

4) if output incorrect:

* adjust connection strength
(positive or negative) to make
the pattern be classified

correctly

5) repeat until no more errors




Artificial Neural Networks
= Stacking of many artificial neurons
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lllustration Nanina Fohr



The history of Al in a nutshell

expert systems

neural networks

‘ Peaks of Inflated Expectations

Plateau of Productivity

Slope of Enlightenment

Troughs of Disillusionment

Technology Trigger

1956




What’s dlfferent B R
now than it #1 models are blgger
used to be? #2 we have more data

“#3 we have meore compute power

#4 the systems. actually work for several tasks-
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Al does the
laundry

&7




Al knows a lot

-






TECHNISCHE
UNIVERSITAT
DARMSTADT

Schachmatt durch ,CrazyAra™
Kiinstliche Intelligenz schldgt mehrfachen Weltmeister im Einsetzschach

Der von den TU-Studierenden Johannes Czech, Moritz Willig und Alena Beyer entwickelte Bot
LLrazyAra"™ hat den Schachprofi Justin Tan in einem Online-Match der Schach-Variante
JCrazyhouse™ mit 4:1 geschlagen. Gelernt hat der Bot mittels kiinstlicher neuronaler Netze,
was ihm erfaubt, vorausschauend Entscheidungen zu treffen. Das Besondere: Die Studierenden
konnten damit einen Erfolg auf einem Feld feiern, das sonst von Giganten wie Google dominiert
wird,
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Al assists you




Your turn!

What do you think? Are we done? Is
a Al just a success?

You have 5 minutes!



Ehe New York imes

:)S‘,'chobx‘,' and neural sCience, Mr Davis is a professor of CoOmputer
science.



Al has many
Isolated talents




Al is not superhuman
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DARPA challenge (2015)



Al is not superhuman

And this also holds as of today




Your turn!

Do you think Al is superhuman?
Please give examples and pros and
cons. Also recall the definition of Al!

You have 5 minutes!



Fundamental Differences

<« Prvoveing Atm Volume 27, haue Y8, pIRIT- I8 0l 29 September 2017 Nasl Al »

Humans, but Not Deep Neural Networks, Often Miss Giant Targets in
Scenes

3 Erei A

as of today



Fundamental Differences

+.007 x

“panda” “nematode” “gibbon™
57.7% confidence 8.2% confidence 99.3 % confidence

Google, 2015

REPORTS PSYCHOLOGY

Semantics derived automatically from language
corpora contain human-like biases

Aylin Caliskan'-", Joanna J. Bryson'", Arvind Narayanan'’
+ See all authors and affiliations

Science 14 ;'\"2' 2017
Vol 356, Issue 6334, pp. 183-186
DO 10.1126/science aal4230

Brown et al. (2017)



The Quest for
a ,good” Al

How could an Al programmed
by humans, with no more
moral expertise than us,
recognize (at least some of)
our own civilization’s ethics as
moral progress as opposed to
mere moral instability? '

,1 he Ethics of Artificial ‘
Intelligence® Cambridge |

\
“’l
-
-

Handbook of Artificial -
Intelligence, 2011 -b' /‘

Nick Bostrom

Eliezer Yudkowsky

MACHINE INTELLIGENCE
RESEARCH INSTITUTE




= n [Jentzsch, Schramowski, Rothkopf,
The Moral Choice Machine s aes 20 p
Not all stereotypes are bad B S

Generate embedding for new
question ,,Should | ... ?“

Sotry to heet that what sre your syrmploms?

,»Yes, | should“ ,No, | should not"

-
o

[ Embedding of ] Embedding of

leg

Calculate Calculate
cosine similarity cosine similarity

N

Report most
similar asnwer




[Jentzsch, Schramowski, Rothkopf,

The Moral Choice Machine «esing Aeszoie

AAAI /| ACM ¢

Not all stereotypes are bad t,i’zi e

TECHNISCHE
ll‘;!"."t H_k\[‘/‘qI
DARMSTADI

05:10 Min.
https.//www.hr-fernsehen.de/sendungen-a- P 0 :
s/hauptsache-kultur/sendungen/hauptsache- Der Hamster gehort nicht in den Toaster - Wie Forscher von der TU

kultur,sendung-56324.html Darmstadt versuchen, Maschinen ... [Videoseite]
hauptsache kultur | 14.03.19, 22:45 Uhr



https://www.hr-fernsehen.de/sendungen-a-z/hauptsache-kultur/sendungen/hauptsache-kultur,sendung-56324.html

The future of Al T <

ALL SYSTEMS 60




The future of Al
The third wave of Al

Al systems that can acquire
human-like communication and

reasoning capabilities, with the
ability to recognise new

situations and adapt to them.




Meeting this grand challenge
IS a team sport !




And this is Al!
Thanks to all students of the Sti" a IOt to be

Research Training Group "Atrtificial

Intelligence - Factg, Chances, Ri.sks“ —_ g d O ne ! It is a
of the German National Academic ———

Scholarship Foundation. Special

thanks to Maike Elisa Muller and * " team s po rt'
Jannik Kossen for taking the lead "

and to Matthias Kleiner, president

of the Leibniz Association, for his
preface

Kristian Kersting - Christoph Lampert
Constantin Rothkopf Hrsg.
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Deep Learning

Thanks to Fie-Fei Li, Geoff Hinton, Viktoriia Sharmanska and many others
for making their slides publically available.
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Your turn!

So we know what algorithms are! Are
they just for computers? What do

you think?

You have 5 minutes!



Algorithms are not just for computers




Arms race to deeply
understand data
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Bottom line:
Take your data spreadsheet ...

Features

Objects




... and apply
Machine Learning

output, f(x)
| |
A /M - o) - N

/\

input, x

Gaussian Processes

teaches I

00000

Distillation/LUPI
yyyyy NO
Oo 090

., 0.0,

O C Dl
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Compressed O

Autoencoder,

Deep Learning

Probabilistic Graphical Models 8 bl @
Arithmetic Circuits '

Features

R e
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T 19O

................
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..........
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Boosting

Big Data Matrix Factorization

Diffusion Models

and many more ...







We have 10 example.
5 “Laubheuschrecken® and 5 Grashupfer.

Laubheuschrecken




Let us put the examples into an Excel sheet

Not a feature, just for organization!!!!

Body length antenna Class
length
1 2.7 5.5 Grasshiipfer
2 8.0 9.1 Laubheuschrecke
3 0.9 4.7 Grasshiipfer
4 1.1 3.1 Grasshiipfer
5 54 8.5 Laubheuschrecke
6 2.9 1.9 Grasshupfer
/ 6.1 6.6 Laubheuschrecke
8 0.5 1.0 Grasshiipfer
9 8.3 6.6 Laubheuschrecke
10 8.1 4.7 Laubheuschrecke
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Laubheuschrecke
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Your turn!

Simple! What do you think? Is
machine learning that simple?

You have 5 minutes!



Research
question
How does my data look
like?
Deployment Mlnd the Data collection
data science and preparation

loop

oiscuss s




What if the machine can
help to find the right
representation?



Deep Neural Learning



DeepMind’s AlphaGo

—

Watch NATURE video at https://www.youtube.com/watch?v=g-dKXOIsfo8



DeepMind’s AlphaGo

a Value network
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Deep policy network is trained to produce probability map of
promising moves. The deep value network is used to prune
the search tree (monte-carlo tree search); so there is a lot of
classical AI machinery around the deep (p)art.



And yes, the machine may also learn to
play other games




Goal of Deep Architectures

High-level semenatical
representations

To this aim most
approaches use

(stacked) neural

networks Edges, local shapes,
object parts

Low level representation

Deep learning methods aim at
= learning feature hierarchies

= where features from higher levels of

the hierarchy are formed by lower
level features.

very high level representation:

MAN] [SITTING

A

. E1C ...

A

slightly higher level representation

4

FaEW mput vector represenialson:

A'=123119]20 18
RS AR R O
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Figure is from Yoshua Bengio



Deep Architectures

Deep architectures are composed of multiple
levels of non-linear operations, such as neural

nets with many hidden layers.

Examples of non-linear

Output |ayer activations:

tanh(x)

Hidden layers e
o(x)=1+e™)

max(0, x)
Input layer

In practice, NN with multiple hidden layers work
better than with a single hidden layer.



Artificial Neural Networks are inspired by
neural networks

NEURAL NETWORK MAPPING

L st NEURONS.....oveones e PR

.
43 . - SESARPESR IV Y 0 ) e
\. 7 s BERAA e ccsvpedpesfanie
: R
. - e .
»l 3
Bl.l! l ) p-
Fanet

Input Layer Hidden Layer



Abstract Neural Unit

> - N

Inputs Weights Summation and Bias Activation Output



Commonly, neurons are encoded as
Sigmoid Unit (but other units are possible)

W1

Xo--1
1 Wo a=2_"w; X X y=o(a)= 1/(1+ea)

o(x) is the sigmoid function: 1/(1+e™)
do(x)/dx= o(X) (1- o(X))

For training, derive gradient decent :
e one sigmoid function

OE/ow; = -2,(tP-yP) yP (1-yP) xP
o Multilayer networks of sigmoid units
use backpropagation




Gradient Descent Rule for
Sigmoid Output Function

C 4 sigmoid

I |
A
’
@)

d

AN

d

EP[wy,...,W,] = V2 (tP-yP)?
OEP/oW; = d/ow; V2 (tP-yP)2
= ofow; V2 (tP- o(2; Wi X;P))2
= (tP-yP) o (2 Wi XP) (-xP)

for y=c(a) = 1/(1+e?)
o (a)= e?/(1+e?)?=c(a) (1-o(a))

W= W; + a yP (1-yP)(tP-yP) xP



Build (feedforward) Multi-Layer Networks
by sticking together units

(D output layer

A

v

hidden layer

input layer



Training-Rule for Weights to
the Output Layer

EP[w;] = V2 % (tP-yiP)?

W, \ SEP/ow; = ofow; Va I (tP-yPY2
C v, = - yiP(1-yP)(tP-yP;) XP
Xi ‘v\\ N X e I
\ \/i <~ A\ ! AW]I - U Yjp(l'Yjp) (tpj'Yjp) Xip

\ / _” So \
¢ e, &
We just want to rewrite in activation

terms of input-output only

with 6 b= YJp(l'YJp) (tp 'YJp)




Training-Rule for Weights to
the Output Layer

Credit assignment problem:
No target values t for hidden
layer units.

Error for hidden units?

O = 2 WJ-J- (1-y))

AW =« ka(l'ka)ip

activation View X as activation
intermediate output




Training-Rule for Weights to
the Output Layer

» Yjv. EP[wis] = V2 % (&P-yP)?

Wy / \/\), \ OEP/owy = dfowy V2 55 (EP-yP)>
k ¢ //\‘ , \\ \ =@/8Wki VZZJ' (tjp_G(szjk ka))z

!/ ,
X& H ¢ =0/ OWy; V2Z; (§P-o(Z Wi o(ZWig XP)))?
= Z (t p-pr) G’j(a) ij G’ k(a) Xip
Wy Z 6 Wi c (a) xP
| X ® = Z‘ ik Xk (1-X) %P

AW; = 'XP with o, = 2 O; wkxk(l-xk)



Backpropagation

Backward step:
propagate errors from
output to hidden layer

Forward step:
Propagate activation
from input to output layer



Tinker with a neural network at
http://playground.tensorflow.org/

INPUT ' 3 HIDDEN LAYERS OUTPUT
WSO

p 1

3\

\

\.

X »

& .




Your turn!

What do you think? Are artificial
neural networks biologically
plausible?

You have 5 minutes!
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The first breakthrough of (D)NNs was on image classification

Deep Convolutional Networks

O Convolutional layer

O Non-linear activation function ReLU
O Max pooling layer

O Fully connected layer



Deep Convolutional Networks CNNs

Compared to standard neural networks with
similarly-sized layers,

= CNNs have much fewer connections and
parameters

= and so they are easier to train

= and typically have more than five layers (a
number of layers which makes fully-
connected neural networks almost impossible
to train properly when initialized randomly)

= and they are tailored towards computer vision

LeNet, 1998 LeCun Y, Bottou L, Bengio Y, Haffner P: Gradient-Based Learning Applied to Document Recognition, Proceedings of the IEEE

AlexNet, 2012 Krizhevsky A, Sutskever I, Hinton G: ImageNet Classification with Deep Convolutional Neural Networks, NIPS 2012



Convolutional layer

32x32x3 image

32 height

3 depth

Filter try to detect local patterns such as color, edges, ...



Convolutional layer

Filters always extend the full

_——— depthoftheinput volume
32x32x3 image /

5x5x3 filter

32 Ill

32

3

Filter try to detect local patterns such as color, edges, ...



Convolutional layer

Filters always extend the full

_——— depthoftheinput volume

32x32x3 image /
oxox3 filter
32 L/
I Convolve the filter with the image
i.e. “slide over the image spatially,

computing dot products”

32

3

Filter try to detect local patterns such as color, edges, ...



Convolutional layer

__— 32x32x3 image
5x5x3 filter w

V
=0

32

™~ 1 number:
the result of taking a dot product between the
filter and a small 5x5x3 chunk of the image X

T
w X (in general, WTX + bias)

Filter try to detect local patterns such as color, edges, ...



Convolutional layer

activation map

__— 32x32x3 image

5x5x3 filter w, /
=
@>@ “

convolve (slide) over all

spatial locations
32 28

Filter try to detect local patterns such as color, edges, ...




Convolutional layer
consiaer a second, green titer
— 32x32x3 image activation maps

5x5x3 filter w, %
=
@>@ ”

convolve (slide) over all

spatial locations
32 / 28

Filter try to detect local patterns such as color, edges, ...




Convolutional layer

For example, if we had 6 5x5 gilters, we’ll get 6 separate activation maps:
X

activation maps

N

Convolution Layer

g A

3 6

28

We stack these up to get a “new image” of size 28x28x6!

Filter try to detect local patterns such as color, edges, ...



Convolutional layer demo

To see this in action:

Input Volume (+pad 1) (7x7x3)

http://cs231n.qgithub.io/assets/conv-demo/index.html

Filter WO (3x3x3)

b 5 g

S © © O

xf:,:,0 w0fz:,:,0
OQ§ogojo o 0 0O -140 §1
Ogogojlr o 2 0 0 Jo §1
Og1Lgojz2 o 1 0 1 §-1§1
08 119 Q0 12 27 00 0 w0 s
03 23 (01 00 25 [0 0
O 23 (1N 2 12 AT (O
0 0 046 0

) 3

£2

Filter W1 (3x3x3) Output Volume (3x3x2)
wif:,:,0] of:,:,0)
0 1 -l 0 53
0 <10 S 13 S
0 -1 1 8 10 3
wif:,:,1) of:,:,1)
-1 0 0 -8 -8 3
1 10 31 0
1 1 0 -3 -8 -5
wi[:,:,2)
-1 1 -1
0 -1 -1
1 0 0O
Bias bl (IxIx1)
bl[:,:,0]
0

logglcmgwmcm



http://cs231n.github.io/assets/conv-demo/index.html

Why is it called convolutional layer?

Because it is related to convolution of two
signals: S
g f[X,y]*g[X,y]= E E f[nlanz]'g[x_npy_nz]

elementwise multiplication and sum
of a filter and the signal (image)

E.g. convolution by a
bump function is a kind
of "blurring”, i.e., its
effect on images is

L ... Or edges

Input image Convolution Feature map

similar to what a short- Kemel

sighted person 1 -1 -1
experiences when -1 8 -1
taking off his or her 1 =1 =1

glasses.



Deep Convolutional Networks

» Convolutional layer

O Non-linear activation function ReLU
O Max pooling layer

O Fully connected layer



Where is RelLU?

Preview: ConvNet is a sequence of Convolutional Layers, interspersed with
activation functions

32 28 24
CONV, CONYV, CONYV,
RelLU RelLU RelLU
e.g.6 e.g. 10
oX5x3 OX5X6
32 filters 28 filters 24




Rectified Linear Unit, RelLU

« Non-linear activation function are applied per-element

« Rectified linear unit (ReLU):

= max(0,x)

= makes learning faster (in practice x6)

= avoids saturation issues (unlike sigmoid, tanh)
= simplifies training with backpropagation

= preferred option (works well)

Other examples:

tanh(x)

1

0.5}

tanh(x)

0}

-0.5-

's 0 5

sigmoid(x)=(1+eX)-1

1 . —




Your turn!

State the formulas for the sigmoid
and RelLU activation functions! Why
do you think there are different
activation functions? And when to

you use which one?

You have 5 minutes!



Deep Convolutional Networks

» Convolutional layer

» Non-linear activation function RelLU
O Max pooling layer

O Fully connected layer



Where is pooling?

RELU RELU  RELU RELU  RELU RELU
CONVlCONVl cowvlcowvl cowvlcomvl

R R, R

AN

-
o) —
.’f
-
.
’.’.
——
1 2
-
— |

AS (NG LS LN 5 A

ARTBLUEHRNSE

Two more layers to go: pooling and fully connected layers ©




Spatial pooling

Pooling layer
 Makes the representations smaller (downsampling)
« Operates over each activation map independently
« Role: invariance to small transformation
224x224x64
112x112x64

1 N
224

224

— 112
downsampling
112




Max pooling

Single activation map

Pl111]2] 4
max pool with 2x2 filters
516 |7 | 8 and stride 2 6 | 8
3120110 3 | 4
11 2] 3| 4
Alternatives:

= sum pooling
= overlapping pooling



Deep Convolutional Networks

» Convolutional layer

» Non-linear activation function RelLU
» Max pooling layer

O Fully connected layer



Where is a fully connected layer (FC)?

RELU RELU  RELU RELU  RELU RELU
CONVlCONVl convlcowvl cowvlcomvl

S B B B

)
i

LI 1L L] ]

-
.y —
p’f
-

:
p—
‘).
—— 2
——
—d

TR OO
W AR I e

WV NNV NN YN




Fully connected (last) layer

Contains neurons that connect to the entire input
volume, as in ordinary Neural Networks:

Output layer

Hidden layer

Hidden layer

neurons between two adjacent layers are fully
pairwise connected, but neurons within a single layer
share no connections



Output layer

In classification:

= the output layer is fully connected with number of
neurons equal to number of classes

= followed by softmax non-linear activation

Pr(classl) Pr(class2) Pr(class3)

Output layer

Last hidden layer



Running CNNs demo

To see this In action, check

http://cs.stanford.edu/people/karpathy/convnetjs/demo/
cifar10.html

https://www.tensorflow.org/tutorials/deep cnn

http://scienceai.github.io/neocortex/cifar10_cnn/


http://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html

Deep Networks are composed of multiple levels of non-
inear operations, such as neural nets with many hidden
ayers

We went through the architecture of a standard deep
network and have seen all major ingredients.

Deep Convolutional Networks

» Convolutional layer

Non-linear activation function RelLU
» Max pooling layer
» Fully connected layer



Your turn!

What do you think? Are deep
networks superhuman?

You have 5 minutes!



Fast-forward to today

Revolution of Depth 282
‘ 152 layers ’ '

\
\
\
‘ 22 layers ‘ 19 Iayers
\ 6.7

3 57 I_ L I ‘ 8 layers ’ ‘ 8 layers

ILSVRC'15 ILSVRC'14  ILSVRC'14  ILSVRC'13  ILSVRC'12  ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet

ImageNet Classification top-5 error (%)

Kaiming He, et al. Deep residual learning for Image Recognition, 2015



“deeper” example: AlexNet

\.l
- - P—
——_— A . ‘ r,
. S 13 4 [\
, :
{
' X ¢ ; 3 | 13 dense vense
_— } ) : 3 ’ :
- jr‘ A l ) y I y
= I 4 4 1
W !
’ S J - D l; |
s 3
Al \ g™ - —3 ) 192 ] I5%8 45ia \Tense
) . f\13 ‘ 13 13
4 \ ' i ‘
",L“;....._. A o = o -l w‘ 2. o « ‘
S re I \ 1
224 ! ‘! '{ N 3 “-H Y ‘ '
s | \ha o 11 | [dense’| densel [ |
a | ==t (F——3k N wilwll
!
| | =" |
b 3 ! | \{ | B fooo
33 9 19 128 Max o 1h -
B | I 9 J048
28t ride Max - 128 Max PO :
Yof 4 pooling pooi ng
3 Y PR

Input: RGB image
Output: class label (out of 1000 classes)

5 convolutional layers + 3 fully connected layers (with ReLU, max pooling)

trained using 2 streams (2 GPU). In this lecture, we will present the
architecture as 1 stream for simplicity and clarity.



AlexNet was trained on ImageNet

O O 0 0O O

15M images
22K categories
Images collected from Web
Human labelers (Amazon’s Mechanical Turk crowd-sourcing)
ImageNet Large Scale Visual Recognition Challenge (ILSVRC-2010)
o 1K categories
o 1.2M training images (~1000 per category)
o 50,000 validation images

o 150,000 testing images

RGB images; mean normalization

Variable-resolution, but this architecture scales them to 256x256 size



ImageNet Tasks

Classification goals:

O Make 1 guess about the label (Top-1 error)

O make 5 guesses about the label (Top-5 error)




Results of AlexNet on ImageNet




What have we learnt so far?

« Deep Neural Networks aim at learning feature
hierachies

« We have understood the structure of convolutional
neural networks, one of the central DNN
architectures

Convolutional layer, ReLU,Max pooling layer, fully connected layer

« DNNs are rather large but result in state-of-the-art

performance on many tasks



Let’s now consider
training in more details

* Training Deep Convolutional Neural Networks

 Stochastic gradient descent
« Backpropagation
 Initialization

* Preventing overfitting
« Dropout regularization
« Data augmentation

* Fine-tuning



Stochastic gradient descent (SGD)

(Mini-batch) SGD

Initialize the parameters randomly but smart

Loop over the whole training data (multiple times):
d Sample a datapoint (a batch of data)

O Forward propagate the data through the network, compute the

classification loss. |
E = 5 (ypredicted - ytrue )2

the gradient of the loss w.r.t. parameters through
the network

E
0 Update the parameters using the gradient w'*' = w' — ¢t - d—(wt)

dw



Recall Backpropagation

Implementations typically maintain a modular structure, where the
nodes/bricks implement the forward and backward procedures

Sequential brick

- E Ei-a

Propagation
“"Apply propagation rule to By, B,, B3, ..., By.
Back-propagation

“Apply back-propagation rule to By, ..., B3, B,, B;.



Recall Backpropagation

Last layer used for classification

Square loss brick

X

- g

Propagation
1
E=y= E(x — d)*

Back-propagation

OE OE
O (v — T2 — (v _ AT
I (x —d) 3y (x —ad)



Recall Backpropagation

Typical choices

Loss bricks

d 0
Square y=%(x—d)2 £=(x—d)T£
] — @
Log =+t y=log(1+e ) B = Tre oy
Hinge c=+1 y = max(0,m —cx) g—i = —c [{cx <m} g—i
_ X OE] _ , x X O
LogSoftMax c=1..k vy =log(},e*x) —x, &] = (e¥s/Xy ek — 5sc)@
S

| - _ %) _ (5. .- o
MaxMargin c=1..k y = [r,?i‘ff{xk + mj} xc] [ax]s = (04 — 05.) I{E > 0} 3y

+



Recall Backpropagation

Fully connected layers, convolutional layers (dot product)

Linear brick

Propagation

y = Wx

Back-propagation

0E _ OF
w 9y
0E  OE



Recall Backpropagation

Non-linear activations

Activationfunction brick

Propagation

Vs = f(xs)
Back-propagation

[aE] _ [0E

| =5 ro

s Loyl



Recall Backpropagation

Typical non-linear activations

Activation functions

Sigmoid Vo = 1+1_x5 -Z_E- — -ZE- Xs - —Xs
e ax]s Loyl (1+e¥s)(1+e%s)

Tanh Yy, = tanh(x,) :Z—i:s = :Zi:s COS;Z o

Relu ys = max(0, x,) :g—i:s = :Z—i:s [{x, > 0}

Ramp . = it (il 7 ) Z_is B Z_is =l <x< 1)



Subgradients
RelLU gradient is not defined at x=0, use a subgradient instead

A

0max(0,z) =1

O:max(0,z) =0

O,max(0,z) € [0, 1]

Practice note: during training, when a ‘kink” point was
crossed, the numerical gradient will not be exact.



Some SGD guidelines

Initialization of the (filter) weights

= don't initialize with zero
= don't initialize with the same value

= sample from uniform distribution U[-b,b] around zero or from Normal
distribution

: . dE
Decay of the learning rate o« 4mm w'™' = ' —Ot'd—(wt)
w
as we get closer to the optimum, take smaller update steps
= start with large learning rate (e.g. 0.1)
= maintain until validation error stops improving

= divide learning rate by 2 and go back to previous step



Normalization is important

Data preprocessing: normalization (recall e.g. clustering)

original data zero-centered data normalized data

SRE-&

¢

In images: subtract the mean of RGB intensities of
the whole dataset from each pixel



Also regularization

Regularization: Dropout

“randomly set some neurons to zero in the forward pass”
(with probability 0.5)

(a) Standard Neural Net (b) After applying dropout. [Srivastava et al., 2014]

The neurons which are “dropped out” do not contribute to the forward pass
and do not participate in backpropagation.

So every time an input is presented, the neural network samples different
architecture, but all these architectures share weights.



Also regularization

Regularization: Dropout
“randomly set some neurons to zero in the forward pass”
(with probability 0.5)

(a) Standard Neural Net (b) After applying dropout. [Srivastava et al., 2014]

At test time, use average predictions over all the ensemble of models
(weighted with 0.5)



And data augmentation

The easiest and most common method to reduce
overfitting on image data is to artificially enlarge the

Forms of data augmentation
(for images):

= horizontal reflections
= random crop
= changing RGB intensities

= image translation




As well as fine-tuning

1. Train on ImageNet 2. Finetune network on
\ your own data

ImageNet data

your
data



Fine-tuning

Transfer Learning with CNNs

| image |

conv-64
conv-64
maxpool

conv-128
conv-128
maxpool

conv-256
conv-256
maxpool

conv-512
conv-512
maxpool

conv-512
conv-512
maxpool

FC-4096
FC-4096
FC-1000
softmax

1. Train on
ImageNet

image |

conv-64
conv-64
maxpool

conv-128
conv-128
maxpool

conv-256
conv-256
maxpool

conv-512
conv-512
maxpool

conv-512
conv-512
maxpool

FC-4096
FC-4096

FC-1000
softmax

2. If small dataset: fix
all weights (treat CNN
as fixed feature
extractor), retrain only
the classifier

l.e. swap the Softmax
layer at the end

| image |

conv-64

conv-64

maxpool

conv-128
conv-128
maxpool

conv-256
conv-256
maxpool

3. If you have medium sized
dataset, “finetune” instead:
use the old weights as
initialization, train the full
network or only some of the
higher layers

retrain bigger portion of the

conv-512
conv-512
maxpool

conv-512
conv-512
maxpool

FC-4096
FC-4096
FC-1000
softmax

network, or even all of it.

e

A lot of pre-trained models in Caffe Model Zoo
https://github.com/BVLC/caffe/wiki/Model-Zoo



https://github.com/BVLC/caffe/wiki/Model-Zoo

Aim at learning feature hierachies

Typical architectures: Convolutional layer, ReLU,Max pooling
layer, fully connected layer

Rather large networks but SOTA performance on many tasks

Training done via SGD together with normalization,
regularization, and data augmention

Large networks often used in a pre-trained fashion



And this is the
major idea of
deep learning!

T
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Deep learning makes the difference

Data are now ubiquitous. There is great
value from understanding this data,
building models and making predictions
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Potentially much more powerful than shallow
architectures, represent computations
[LeCun, Bengio, Hinton Nature 521, 436—444, 2015]

Neural Networks ..

-----
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Deep NerINetwk

NATUICINSIGHT

Potentially much more powerful than shallow
architectures, represent computations
[LeCun, Bengio, Hinton Nature 521, 436—444, 2015]

They “develop intuition” about complicated
biological processes and generate scientific data

[Schramowski, Brugger, Mahlein, Kersting 2019] ﬂ;lsunde.s aaaaa i
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Deep Neural Networks

NATUTCINSIGHT

Potentially much more powerful than shallow
architectures, represent computations
[LeCun, Bengio, Hinton Nature 521, 436—444, 2015]

4‘
B 15
,‘ —" ( B 2" wisk R @
o | £ ’(\/.p)-us) - r '—vlﬁ*w > " Vv lichess.org
iy ) 0 ; 00 ' > ¢ —
® xc;;x?:‘hm nlo  (2) Train the neural network ole ' ' o ® m:"";?f::?:m? (5) Connect it 10 lichess.org B
v
C\ Combne e neur work
with Morme-Carlo Tree Search

They can beat the world champion in CrazyHouse

[Czech, Willig, Beyer, Kersting, FUrnkranz arXiv:1908.06660 2019 ]



NATUICINSIGHT

Potentially much more powerful than shallow
architectures, represent computations

[LeCun, Bengio, Hinton Nature 521, 436—444, 2015] Fashion MNIST

92.50
90.00
3] RelU B
= Sigmoid O S
T U s 8250
anh S O
Swish <U 80.00
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https://github.com/ml-research/pau SSoml M
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Bias in activations! E2E-Learning Activations
[Molina, Schramowski, Kersting arxiv:1901.03704 2019]

ﬂ? Bundesanstalt fiir
Landwirtschaft und Ernéhrung


https://github.com/ml-research/pau

Your turn!

Deep neural learning = Al? Is it
solving everything? Are the pitfalls?
Can we trust deep neural networks?

You have 5 minutes!



They “capture” stereotypes

and can be rather brittle

‘6pand8|'

“nematode” “gibbon”
57.7% confidence 8.2% confidence 99.3 % confidence

Google, 2015

REPORTS PSYCHOLOG

Semantics derived automatically from language
corpora contain human-like biases p#=

Aylin Caliskan'-", Joanna J. Bryson'%", Arvind Narayanan'-"
+ See all authors and affiliations

ence 14 Apr 201/

/ LA £ 234 n 1R QA

Vol. 356, Issue 6334, pp. 183-186
" 10N 17AR /= PPN 47

Brown et al. (2017)



05:10 Min.
Der Hamster gehart nicht in den Toaster - Wie Forscher von der TU
Darmstadt versuchen, Maschinen ... [Videoseite]

hauptsache kultur | 14.03.19, 22:45 Uhr

The Moral Choice Machine

Dos  WEAT Bias Don’ts  WEAT Bias S
smile 0.116 0.348 rot -0.099 -1.118

sightsee  0.090 0.281 negative -0.101 -0.763

cheer 0.094 0.277 harm -0.110 -0.730 :

celebrate 0.114 0.264 damage -0.105 -0.664 Moral Bias = . Cosine Similarity . Cosine Similariy
picnic 0.093 0.260 slander -0.108 -0.600 ;

snuggle  0.108 0.238 slur -0.109 -0.569

But lucky they also “capture”

AAAI /| ACM conference on

our moral choices | -
[Jentzsch, Schramowski, Rothkopf, Kersting AIES 2019] ::,;x} el Ao e
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DNNs often have no probabilistic

semantics._ They are not P(YlX) ¥ P(Y,X)

calibrated joint distributions.

MNIST

392L\9562x/ 8
§9/A5000 64
70 6636370
3779460 (g2
293493981 12¢
/Qgd 65737
3 19/58§08Y
S&2LEEE S 8899
3704 +¢354+3
19670 062 23 :

Train & Evaluate Transfer Testing

[Bradshaw et al. arXiv:1707.02476 2017]
— MNIST
: SVHN

o 107 SEMEION

2 M Many DNNs cannot
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z u u u
8 o distinguish the
s datasets
—-100 0 100 200
Input log ,likelihood® (sum over outputs)
[Peharz, Vergari, Molina, Stelzner, Trapp, Kersting, Ghahramani UAI 2019] | * Gonference on Uncertainty in Aviia Inteligence
5% UNIVERSITY OF = 5o, July 22 - 25, 2019
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Can we borrow ideas from
deep learning for probabilistic
graphical models?

B

Judea Pearl, UCLA
Turing Award 2012



N
Sum-Product Networks
a deep probabilistic Ifning
l

I.

framework

Darwiche
UCLA

Computational graph
(kind of TensorFlow
graphs) that encodes
how to compute
probabilities

Inference is linear in size of network



Alternative Representation:
Graphical Models as (Deep) Networks

X; | Xz | P(X) PX)=0.4-1[X=1] - I[X,=1]
1] 1] o4 +0.2 - I[X,=1] - I[X,=0
1 0 0.2 1. 71T l
o | 1] o1 R
0|0 03 +0.3 - I[X=0] - 1] X,=0




Alternative Representation:
Graphical Models as (Deep) Networks

X | Xz | P(X) P(X)=0.4 - I[X=1] - [[X,=1]
1| 1] 04 +0.2 - I[X;=1] - I[X,=0
1| 0| 02 o _
0| 1| o1 +O1-IA =0 1=
0| o 03 +0.3 - I[X,=0] - [[X;=0




Shorthand using Indicators

X; | Xz | P(X)
1| 1] 04
1| o] 02
0| 1] 01
0| 0] 03

PX)=04-X, -
+0.2- X, -
+0.1-X, -
+0.3- X -



Summing Out Variables

Let us say, we want to compute P(X;=1)

XI XZ P(X) P(e) — 0.4 . Xl . XZ
1| 1] 04 102X, .)—(2
1| o | 02 _
0| 1| o1 +0.1 ')_(1'{2
0|0 03 +0.3-X - X,

Set X,=1,X,=0/X,=1,X,=1

~

{ Easy: Set both indicators of X2 to 1

J




This can be represented as a
computational graph

P(X)

0.4

0.2

0.1

S| == | O

0.3

network polynomial




However, the network polynomial of a
distribution might be exponentially large

Example: Parity
Uniform distribution over states with even number of 1’s




Make the computational graphs deep

Example: Parity
Uniform distribution over states with even number of 1’s

Induce many
hidden layers

Reuse partial computation

20



Alternative Representation:
Graphical Models as Deep Networks

X; | Xz | P(X) PX)=0.4-1[X=1] - I[X,=1]
1] 1] o4 +0.2 - I[X,=1] - I[X,=0
1 0 0.2 1. 71T l
o | 1] o1 R
0|0 03 +0.3 - I[X=0] - 1] X,=0




Alternative Representation:
Graphical Models as Deep Networks

X | Xz | P(X) P(X)=0.4 - I[X=1] - [[X,=1]
1| 1] 04 +0.2 - I[X;=1] - I[X,=0
1| 0| 02 o _
0| 1| o1 +O1-IA =0 1=
0| o 03 +0.3 - I[X,=0] - [[X;=0




Shorthand for Indicators

X; | Xz | P(X)
1| 1] 04
1| o] 02
0| 1] 01
0| 0] 03

PX)=04 X, - X,
+02-X; - X,
+0.1-X,- X,
+03-X, - X,



Sum Out Variables

e. Xl — 1
XI XZ P(X) P(e) — 0.4 . Xl . XZ
1| 1] 04 102X, .)—(2
1| o | 02 _
0| 1| o1 +0.1 ')_(1 {2
0|0 03 +0.3-X - X,

Set X,=1,X,=0/X,=1,X,=1

~

{ Easy: Set both indicators of X2 to 1

J




Idea: Deeper Network Representation
of a Graphical Model that encodes
how to compute probabilities

X; | Xz | P(X)
0.4
0.2

0.1
0.3

O |1 O | =]




Sum-Product Networks* (SPNs)

[Poon, Domingos UAI 2011]

A SPN S is a rooted DAG where:
Nodes: Sum, product, input indicator
Weights on edges from sum to children

XI Xl XZ XZ
*SPNs are an instance of Arithmetic Circuits (ACs). ACs have
been introduced into the Al literature more than15 years ago as a

tractable representation of probability distributions
[Darwiche CACM 48(4):608-647 2001]



P(x,y)

Your turn! P -
K1)=0

What is P(X,)? What is P(X,|X,=1)?

X; | Xz | P(X)
1| 1] 04
1| o] 02
0| 1| 01
0|0 03

You have 10 minutes!



[Poon, Domingos UAI'11; Molina, Natarajan, Kersting AAAI'17; Vergari, Peharz, Di Mauro, Molina, Kersting, Esposito AAAI '18;
Molina, Vergari, Di Mauro, Esposito, Natarajan, Kersting AAAI 18]

FLED SPFlow: An Easy and Extensible Library
®W for Sum-Product Networks [0/ Ve Stelzner Penar

; UNIVERSITAT
' DARMSTADT

UNIVERSITA m UNIVERSITY OF Kersting 2019]
DSBS RARE @Y WATERLOO . MADESI
5 UNIVERSITYOF N\ 7" VECTOR

Federal Minist
¥ CAMBRIDGE \  INSTITUTE kG ® ‘ of Educstion

and Research

2 1995 comemets Vv 2 Branches 0 rvleases AL @ cominb

Rranch master » New pull reguest Creste rew e Upiced fles Find *le m
https://github.com/SPFlow/SPFlow

rom spn.structure.leaves.parametric.Parametric import Categorical - 'f' L
- Domain Specific Language,
rom spn,.structure.Base import Sum, Product
rom spn.structure.base import assign_ids, rebuild_scopes_bottom_up Inference, EM, and MOdeI
Selecti |
p@ = Product(children=|Categorical(p=[0.3, 9.7], scope=1), Categoricall(p=(0.4, 0.6], scope=2)]) e ec .Ion. as We as .
:; :Lr‘:?t:ct(mj'lga:}.‘?oncal(, [?p;: sl?]), scope=1), Categorical(p=[0.6, @.4), scope=2)]) Compllatlon Of SPNS Into TF
2 = P children=| 1 [6.2, 0.8], scope=d@), ] -
5 o e teateor a2, ocen, e, e 0, en AN PYTOrch and also into flat,
p4 = Product(children=[p3, Categorical(p=[0.4, 9.6], pe=2)]) . .
library-free code even suitable
FRAeA1s Ao ot om. e for running on devices:

o C/C++,GPU, FPGA

SPFow, an open-source Python fbrary providing a simple interface to nference, learning and manipulation routines for
deep and tractable probabilistic models caled Sum-Product Networks (SPNs). The fbrary aliows one to quickly create SPNs
both from data and through a doman specfic language (DSL). it efficiently implemaents several probabilstic inderence

sn.tman llia casvna. titon sanssn'.snles sscndpsnale sed lavasscioatro snast sesanbhabla svalasnat s NINT A dlace wish sascealw



[Sommer, Oppermann, Molina, Binnig, Kersting, Koch ICDD 2018]

TABLE I

PERFORMANCE COMPARISON. HEST IND-TO-END THROUDGHPUTS (T EXCLUDING THE CYCLE COUNTER MEASURFEMENTS, ARE DENOTED BOLD,

Dataset Rows cPu TCrue CPUF T-CPUF oGP T4GPU FIGA

(jen) Lrows) (s (rowm (a8 ) (rowsS Cyele
Jes) jis) jes) Coumter
Accidents 17009 | 279827 787 | snon ad 0 17249
Audio 20000 4271.78 5. M7
Netflix 20000 489222 4. o
MSNBC200 =343 | 1547005 30, LS00
MSNBCMN 83434 | 1006078 41, ISSX10
NLICS 21574 791.80 31 - 21904
Mants 21215 o221 52104 659 | 67004 41 035 218092
NIPSS 10000 2511 57 170,23 $210.8 1.22 10256
NIPSIO 10000 im0 .3 11880 | 1158052 057 10279
NIPs20 10000 191.%0 5227 15273 18689 04 0.54 10235
NiPsw 10000 x70 25830 40.54 2555591 0.39 1038
NIPs40 10000 S51.64 18,13 471,26 S N0L49 032 10300
NIPSS0 10000 81244 12.31 792,13 22 3635540 0.28 10559

NIPSs0 10000 104638 0.56 66253 1509 | 40778 % 025 1227
NIPST0 10000 | 114817 871 11380 K81 | 4675926 0.21 14002
NIPSsso 100K 155699 Ha 1277 .81 783 | 63217 DRI 14275

FPGAC T-FPGAC  FPGA  T-FPGA
(ps) (rowsy TR (rowy/
jas) jas)
4
26,28
MLSS
77.5%
78,74
A8.12
11796 196,80 17800 2084
5118 195.59 3357 W Ny
$1.40 194,57 4064 30 21.54
S1.43% 194,46 S4ieD 18.40
S180 19100 2w 1685
S1.53 100 6320 1582
250 15941 72060 13ss |
H1.36 16299 790 51
N 14263 K58 a0 11.65
T84 127.37 061 8D

How do we

learning offshore?

MARESI
7 I Federal Ministry

of Education
and Research



Prlvate Setlntersectlon There are generic protocols to
validate computations on
Special Purpose Protocols Genenc Protocols auth enti Cated d ata WIthOUt
l knowledge of the secret key

rithmetic Circuit Boolean Circuit

GMw #i#H# DNA MSPN #HH
Gates: 298208 Yao Bytes: 9542656 Depth: 615

/ #iHH# DNA PSPN ##HH
Gates: 228272 Yao Bytes: 7304704 Depth: 589
HiHHE NIPS MSPN #HHH

Public Key Crypto >> Symmetnc Crypto >>  One-Time Pad Gates: 1001477 Yao Bytes: 32047264 Depth: 970

A
Homomorphic Encryption

Homomorphic sum-product network
[Molina, Weinert, Treiber, Schneider, Kersting to be submitted 2019]




Random sum-product networks

[Peharz, Vergari, Molina, Stelzner, Trapp, Kersting, Ghahramani UAI 2019]

<574 TECHNISCHE . —— )
UNIVERSITAT Conference on Uncertainty in Artificial Intelligence

g))/? DARMSTADT Tel Aviy, Israel

UNI July 22 - 25, 2019 uai2019

s - Build a random SPN
- S =23 | structure. This can be
ool ol o Ji> done in an informed
EARNEAEY FAREARY CARIEARS cAraEdES  random

(X X NG X EXNG XX XS I X NG (XX ) [N} (X3 Xa) (X3} (X X:) (X (XXX X ) (XX

RAT-SPN MLP  vMLP - .
MNIST ~ 98.19 9832 98.09 10—3 . MNIST \b -7 ’7 b O Utl |e I’S
2 FmNsT 53%551;4) (9%)-6841M) géslM) SVHN q / ? q rotot es
5 ; / ; -4
Do B30 GR0 GR0 £ 10 SEMEION PIORP

(0.37M) (0.31M)  (0.16M)

=g O
= o C

frequency
=] -
=] o¢
E

D

=hg <L

MNIST 00852 00874  0.0974 1
g a7M) 0.82M)  (0.22M) ' (@) Ut| lers
Z FMNIST 03525 02965 0325 10-6
3 0.65M)  (0.82M) (0.29M)
08_‘ 20.NG 16954 16180  1.6263 . p rOtO ty p es

e (2M) (02240 —200000 —150000 —100000 —50000 0
input log likelihood

SPNs can have

i dicti
similar predictive SPNs know when they do

performances as SPNs can distinguish the

(simple) DNNs not know by design

datasets




Your turn!

Mission completed? Just give me
data and everything is done by
ML/AI?

You have 5 minutes!



Reproducibility Crisis in Science (2016)

M. Baker: ,,1,500 scientists lift the lid on reproducibility”. Nature, 2016 May 26;533(7604):452-4. doi: 10.1038/533452
https://www.nature.com/news/1-500-scientists-lift-the-lid-on-reproducibility-1.19970?proof=true



https://www.nature.com/news/1-500-scientists-lift-the-lid-on-reproducibility-1.19970?proof=true
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Reproducibility Crisis in ML & Al (2018)

15,000
10,000
5,000

0
1990 1995 2000 2005 2010 2015

Figure 1: Growth of published reinforcement learning papers.
Shown are the number of RL-related publications (y-axis) Joelle Pineau

per year (x-axis) scraped from Google Scholar searches.
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Figure 4: Performance of several policy gradient algorithms across benchmark MuloCo environment suites

P. Henderson et al.: “Deep Reinforcement learning that Matters“. AAAI 2018



Reproducibility Crisis in ML & Al (2018)

“: N‘L Expel'ts (n=20) Not i;

surc
Slight

crisis

Significant |

crisis |l|
//// Joelle Pineau
o pochalenge @8 | B McGill

| s there a repr

ed?”
= ¢ r opinion chang
gefore the ch “m:tyec:s‘s in ML Has your oP ' #% Facebook Al Research (FAIR)

Opinion ¢ A8
unchangedd

tot | Survey participants:

« 54 challenge participants

» 30 authors of ICLR
submissions targeted by
reproducibility effort

* 14 others (random
volunteers, other ICLR
authors, ICLR area chair
& reviewers, course
instructors)

J. Pineau: ,The ICLR 2018 Reproducibility Challenge®.
Talk at the MLTRAIN@RML Workshop at ICML 2018
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A lot of systems Open ML
to support A

rep roducible Machine learning, better, together Joagquin Vanschoren

ML research TU /e s

ty of Technology
caln sets

Find or add data 10 analyse Download or cmace scientific Find or add data analysis

Uploadmduplomalm

Perc\y Lang

t

W || | P ” s
Run reproducible experiments and create executable papers Enter an existing competition to solve challenging data
using worksheets. problems, or host your own,



However, there are not
enough data scientists,
statisticians, machine

learning and Al experts

Provide the foundations, algorithms, and
tools to develop systems that ease and

support building ML/Al models as much
as possible and in turn help reproducing
and hopfeully even justifying our results




Your turn!

Do you think AutoML is solving
everything?

You have 5 minutes!



Data collection
Deployment and preparation
Mind the

Continuous? Discrete?

LA data science et i

How to report results? IOO p Multinomial? Gaussian?
What is interesting? Poisson? ...




[Molina, Natarajan, Vergari, Di Mauro, Esposito, Kersting AAAI 2018]

Distribution-agnostic
Deep Probabilistic Learning

unﬁnished Educations

oy Use nonparametric
Age S v independency tests
Success SEIanS gl e and piece-wise linear
approximations
1Q
Sa\t'|sfa\cﬁ0“"“eatment s
Satisfaction-Med‘Ca“°“ 0.004 = PWL,A=0 |

PWL, A=1.O “
- PWL, A:SO
= Gaussian |

- e ——
e ——



[Molina, Natarajan, Vergari, Di Mauro, Esposito, Kersting AAAI 2018]

Distribution-agnostic
Deep Probabilistic Learning

No of unﬁnished Educations

Use nonparametric

Age o sstddion Work | independency tests
oINS . and piece-wise linear
: approximations
1Q
Satisfacﬁoﬂ'Tteatment b | ——
satistactionMedication . | o0.004 | \PWL, =01 |

/ﬂ’// D 00 l.'.jl._ :::Vvt'j\\:; '1
However, we have to provide the
statistical types and do not gain insights
into the parametric forms of the variables.

Are they Gaussians? Gammas? ...



Federal Ministry

[Vergari, Molina, Peharz, Ghahramani, Kersting, Valera AAAI 2019] ey DFG MADESI % ‘ grflg(:?uecsaete;?cnh

The Automatlc Daa Scientist

i i i, M A X* AY A" A
. ~ B
X 4 X: ElE
X X '
missing . o
value -

We can even
automatically
discovers the

statistical types and
parametric forms of
the variables
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Mixed Sum-Product Network  Automatic Statistician



That is, the machine understands the data
with few expert input ...

...and can compile data reports automatically




Your turn!

But now we have completed our
mission! Really
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Crossover of ML and DS with data &
programming abstractions

De Raedt, Kersting, Natarajan, Poole: Statistical Relational Artificial Intelligence: Logic, Probability, and
Computation. Morgan and Claypool Publishers, ISBN: 9781627058414, 2016.

=== building general-purpose
Al g data science and ML
machines
R make the ML/DS expert
_ more effective
increases the number of Databases/ S
KATHOLIEKE UNIVERSITEIT T I h — St m ca I
LEUVEN ... peopie who can Logic/
@ S B successfully build ML/DS i

Reasoning

& SR applications




Natarajan, Khot, Kersting, Shavlik. Boosted Statistical Relational Learners. Springer Brief 2015

Boosted Statistica
Relational

Understanding Electronic Health Records|

Medicine

up

THE UNIVERSITY
OF TEXAS AT DALLAS

Atherosclerosis is the cause of the majority of
Acute Myocardial Infarctions (heart attacks)
Left—True

Logical Variables Right - False

(Abstraction) ' Rule/Database view

age_bw(a,35,45,7) P smoke(a,No,5)

. .
chol_bw(3,200,400,7) P Plaque in the left
coronary artery

C_howladon) > [Circulation; 92(8), 2157-62, 1995;

0.79 JACC; 43, 842-7, 2004]

smoke(a,No,0) 4P @_ bw(a,100,1000,5)

1k 0.2 0.830 Algorithm | Accuracy | AUC-ROC [The higher,
PrObablhty J48 0.667 0.607 the better
* 08 | [o97 08 SVM 0.667 0.5
AdaBoost 0.667 0.608
Cage bw(a,30355) Bagging | 0.677 0.613
/\ NB 0.75 0.653
RPT 0.669* 0.778 25%
0.25 RFGB | 0.667* 0.819
Algorithm Likelihood AUC-ROC AUC-PR Time
for Mining Markov Logic The higher, the better The higher, the better The higher, the better The lower, the better
Networks
Boostin 0.81 0.96 0.93 9s
9 ] 11% ] 78% ] 50% ] S37200x
LSM 0.73 0.54 0.62 93 hrs o faster

[Kersting, Driessens ICML 08; Karwath, Kersting, Landwehr ICDM 08; Natarajan, Joshi, Tadepelli, Kersting, Shavlik. IJCAI"11;

Natarajan, Kersting, Ip, Jacobs, Carr IAAl "13; Yang, Kersting, Terry, Carr, Natarajan AIME "15; Khot, Natarajan, Kersting, Shavlik
ICDM"13, MLJ"12, MLJ 15, Yang, Kersting, Natarajan BIBM 17]



Natarajan, Khot, Kersting, Shavlik. Boosted Statistical Relational Learners. Springer Brief 2015

up

THE UNIVERSITY
OF TEXAS AT DALLAS

https://starling.utdallas.edu/software/boostsrl/wiki/

StARLING! A

BOOSTSAL BASIKCS

Geting Stvedt

e Structure

B35C Parametes
Advanced Py wmeters
Sasc Modes
ASvanced Vodes

ADVANCED BOOSTSRL

Oefactt (RON-Boont)

MIN-Boost

Sogesson

One-Class Cuasefcation
Cont-Senative S5

VoG Wik Agvice

Asoronimace Counting
Ducretization of Contnvous-Valued
At e

LMnd Relatong! Rancom Walcs
Grounces Relatored Random Walkos

APPLICATIONS

Noou e Languade Processng

People Publications Software Datasets

Projects Bog Q

BoostSRL Wiki

BoostSRL (Boosting for Statistical Redational Learning) is a gradient-boosting based approach to
learning different types of SRL models. As with the standard gradient -boosting approach, our
approach tums the model leaming problem 10 learning a sequence of regression models. The key
difference 10 the standard approaches is that we learn relational regression models i.e., regression
models that operate on relational data. We assume the data in 3 predicate logic format and the
output are essentially first-order regression trees where the inner nodes contain conjunctions of
logical predicates. For more details on the models and the algorithm, we refer 10 our book on this

topic.

Sriraam Natarajan, Tushar Khot, Kristian Kersting and Jude Shaviik, Boosted Statistical Relational
Learners: From Benchmarks 10 Data-Driven Medicine . SpringerBriefs in Computer Science, ISBN:
978-3-319-13643-1, 2015

Human-in-the-loop learning



In general, computing the exact posterior is intractable,
I.e., inverting the generative process to determine the
state of latent variables corresponding to an input is

time-consuming and error-prone.
Deep Probabilistic Programming

import pyro.distributions as dist
def guide(data):
def model(data): § ‘;(,,‘,),“: ewo varial o1 4 eters with Pyr
¥ defi e ‘ . ! weiLer alpha_q = pyro.param("alpha_q", torch.tensor(15.0),
alphad = ~orch,~cnsor§:b;3) constraint=constraints.positive)
betad = :orgh.tefsor(.w 8) beta_gq = pyro.param("beta_gq", torch.tensor(15.8)
le f the ta ¢ ) constraint=constraints.positive)
f = pyro.sample("latent_fairness”, dist.Beta(alpha®, beta8)) ¥ sample latent f ness from t distributi Beta(alpha_q
# loog er t bsery jata pyro.sample(“latent_fairness", dist.Beta(alpha_q. beta_q))
for 1 in range(len(data))

pyro.samplc(”cbs_(}1:format(1). dist.Bernoulli(f), obs=data[i])

(2) Ease the implementation by some high-
level, probabilistic programming language

C e ) C e )
latent
6
—

Deep Neural Network

¢

observed

——/

(1) Instead of optimizating variational parameters for
every new data point, use a deep network to predict the

posterior given X [Kingma, Welling 2013, Rezende et al. 2014]
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[Stelzner, Molina, Peharz, Vergari, Trapp, Valera, Ghahramani, Kersting ProgProb 2018]

Sum-Product Probabilistic Programming

import pyro.distributions as

def model(data)

def guide(data)

alpha_q = pyro.param("alpha_q", torch.tensor(15.0)
P 8 t h.t ‘f; j) constraint=constraints.posit )
betad = torch.tensor( 9.9) beta_gq = pyro.param(“beta_q", torch.tensor(15.0),
y , constraint=constraints.positive)
f pyro.sample("latent fairness”, dist,Beta(alpha®, betaf))
pyro.sample(“latent_fairness", dist.Beta(alpha_q, beta_q))
f ( (data))
pyro.sample("obs_{}".format(i), dist.Bernoulli(f), obs=data[i]) Sum PrOdUCt Network

FL o
(2) Ease the implementation by some high- @w « =

level, probabilistic programming language

”-------§\ C?{j V}ék 3??‘ Sé;
Deep Neural Network

6 |
observed @ g%
— — R 2

(1) Instead of optimizating variational parameters for
every new data point, use a deep network to predict the
posterior given X [Kingma, Welling 2013, Rezende et al. 2014]

latent

¢




Unsupervised scene understandlng

[Stelzner, Peharz, Kersting ICML 2019]
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Consider e.g. unsupervised &-;-ff‘ * 4
scene understanding using | 7.> !

] » - ALY . .
a generative model Nl ) (c) Noisy MNIST (d) Grid MNIST

[Attend-Infer-Repeat (AIR) model, Hinton et al. NIPS 2016]

SuPAIR
recon

Replace VAE by SPN

result

AIR

as object model 5,



Unsupervised physics learning ¢ m

Y¢' DARMSTADT

[Kossen, Stelzner, Hussing, Voelcker, Kersting arXiv:1910.02425 2019]

putting
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Programming languages for Systems Al,

the computational and mathematical modeling of complex Al systems.

[Laue et al. NeurlPS 2018; Kordjamshidi, Roth, Kersting:
“Systems Al: A Declarative Learning Based Programming
Perspective.” IICAI-ECAI 2018]

Eric Schmidt, Executive Chairman, Alphabet Inc.: Just Say "Yes”, Stanford Graduate School of Business,
May 2, 2017 .https://www.youtube.com/watch?v=vbb-AjiXyhO.



Since science is more than a single table !

P( heart

attack

Crossover of ML and Al with data &
programming abstractions

De Raedt, Kersting, Natarajan, Poole: Statistical Relational Artificial Intelligence: Logic, Probability, and
Computation. Morgan and Claypool Publishers, ISBN: 9781627058414, 2016.

building general-purpose

P Al and ML machines
N make the ML/AI expert
b more effective
KATHOLIEKE UNIVERSITEIT T increases the number Of Databases, Staﬁst. I
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Natarajan, Khot, Kersting, Shavlik. Boosted Statistical Relational Learners. Springer Brief 2015

Boosted Statistica

Understanding Electronic Health Records|
Atherosclerosis is the cause of the majority of
Acute Myocardial Infarctions (heart attacks)
Left—True

Logical Variables Right - False

(Abstraction) Rule/Database view

age_bw(a,35,45,7) g (_Smoke(a,No.5)

TECHNISCHE UID

UNIVERSITAT THE UNIVERSITY
DARMSTADT  OF TEXAS AT DALLAS

. .
C hol_bw(,.200400,7) I Plague in the left
coronary artery

C_Moladon) > [Circulation; 92(8), 2157-62, 1995;
JACC; 43, 842-7, 2004]
, _ig_bw(3,100,1000,5)

0.79

- 0.2 0.830 Algorithm | Accuracy | AUC-ROC [The higher,
PrObablhty J48 0.667 0.607 the better
* 0.8 0.97 0.8 SVM 0.667 0.5
AdaBoost | 0.667 0.608
Cage bw(a,30355) Bagging | 0.677 0.613
/\ NB 0.75 0.653
RPT 0.669*% 0.778 25%
0.25 RFGB 0.667* 0.819
Algorithm Likelihood AUC-ROC AUC-PR Time
for Mini,r\]g tMartov Logic The higher, the better The higher, the better The higher, the better The lower, the better State'Of'the'art
eltworks
Boosting 0.81 ]11% 0.96 ] 28% 0.93 ]50% 9s ] 37200x
LSM 0.73 0.54 0.62 93 hrs o faster

[Kersting, Driessens ICML 08; Karwath, Kersting, Landwehr ICDM 08; Natarajan, Joshi, Tadepelli, Kersting, Shavlik. IJCAI"11;

Natarajan, Kersting, Ip, Jacobs, Carr IAAl "13; Yang, Kersting, Terry, Carr, Natarajan AIME "15; Khot, Natarajan, Kersting, Shavlik
ICDM"13, MLJ"12, MLJ 15, Yang, Kersting, Natarajan BIBM 17]



Natarajan, Khot, Kersting, Shavlik. Boosted Statistical Relational Learners. Springer Brief 2015

up

THE UNIVERSITY
OF TEXAS AT DALLAS

https://starling.utdallas.edu/software/boostsrl/wiki/

StARLING! A

BOOSTSAL BASIKCS

Geting Stvedt

e Structure

B35C Parametes
Advanced Py wmeters
Sasc Modes
ASvanced Vodes

ADVANCED BOOSTSRL

Oefactt (RON-Boont)

MIN-Boost

Sogesson

One-Class Cuasefcation
Cont-Senative S5

VoG Wik Agvice

Asoronimace Counting
Ducretization of Contnvous-Valued
At e

LMnd Relatong! Rancom Walcs
Grounces Relatored Random Walkos

APPLICATIONS

Noou e Languade Processng

People Publications Software Datasets

Projects Bog Q

BoostSRL Wiki

BoostSRL (Boosting for Statistical Redational Learning) is a gradient-boosting based approach to
learning different types of SRL models. As with the standard gradient -boosting approach, our
approach tums the model leaming problem 10 learning a sequence of regression models. The key
difference 10 the standard approaches is that we learn relational regression models i.e., regression
models that operate on relational data. We assume the data in 3 predicate logic format and the
output are essentially first-order regression trees where the inner nodes contain conjunctions of
logical predicates. For more details on the models and the algorithm, we refer 10 our book on this

topic.

Sriraam Natarajan, Tushar Khot, Kristian Kersting and Jude Shaviik, Boosted Statistical Relational
Learners: From Benchmarks 10 Data-Driven Medicine . SpringerBriefs in Computer Science, ISBN:
978-3-319-13643-1, 2015

Human-in-the-loop learning



Not every scientist likes to turn
math into code

in P(w,b,€) = —w
2l b e) = 5w+

Vi
subject to { Vs

Support Vector Machines
Cortes, Vapnik MLJ 20(3):273-297, 1995




Kersting, Mladenov, Tokmakov AlJ “17, Mladenov, Heinrich, Kleinhans, Gonsio, Kersting DeLBP 16

High-level Languages for
Mathematical Programs

Write down SVM in ,,paper form.“ The machine compiles it into solver form.

#QUADRATIC OBJECTIVE
minimize: suzm{J) in feature(I,J))} weight(J)e*2 + c1 * slack + ¢c2 * coslack;

#labeled examples should be on the correct side

subject to forall {I in labeled(I)}: labeled(I)spredict(I) >= 1 - slack(l);

#slacks are positive

subject to forall {I in labeled(I)}: slack(l) >= 0;

Embedded within
Python s.t. loops and re O@P

rules can be used

RELOOP: A Toolkit for Relational Convex Optimization

Support Vector Machines
Cortes, Vapnik MLJ 20(3):273-297, 1995




There are strong invests into high-level
programming languages for AlI/ML

Jl

v,
3.¢ UBER Al Labs

RelationalAl, Apple,
Microsoft and Uber are
investing hundreds of
millions of US dollars

Mﬁ osoft’




2B UNIVERSITY OF

S jcrosoft YL
4% CAMBRIDGE "Research 37% UBER Al Labs
478 UBER Al Labs
Statistical Relational
U N I Artificial Intelligence
Logic, Probability,
and Computation
A TECHNISCHE David Poke
UNIVERSITAT
DARMSTADT

Responsible Al Open Al systems
systems that explain that are easy to
their decisions and realize and
co-evolve with the understandable for
humans the domain experts

Getting deep
systems that reason
and know when they

don’t know

Toll the Al wh -.- Teso, Kersting AIES 2019
nl€ the when It IS - ‘o= ® AAAI /| ACM conference on
right for the wrong sy 0000 .tg’xx. ARTIFICIAL INTELLIGENCE,

reasons and it adapts I B o b e b e e ETHICS; AND SOCIETY

(p = 0.24) and “Labrador” (p = 0.21) o o
ist behavior” v




The third wave of
differentiable programming

Getting deep systems that
know when they do not know
and, hence, recognise new
situations and adapt to them




Overall, AI/ML/DS indeed refine
“formal” science, but ...

Al is more than deep neural networks. Probabilistic and
causal models are whiteboxes that provide insights into
applications

+ Al is more than a single table. Loops, graphs, different
data types, relational DBs, ... are central to ML/Al and
high-level programming languages for ML/Al help to
capture this complexity and makes using ML/AIl simpler

+ Al is more than just Machine Learners and Statisticians:
Al is a team sport

= The Third Wave of Al requires integrative CS, from
software engineering and DB systems, over ML and Al
to computational CogSci



But Al and
Humans can
and will be
partners!
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