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Abstract. While transformers have gained recognition as a versatile
tool for artificial intelligence (AI), an unexplored challenge arises in
the context of chess — a classical Al benchmark. Here, incorporating
Vision Transformers (ViTs) into AlphaZero is insufficient for chess
mastery, mainly due to ViTs’ computational limitations. The attempt
to optimize their efficiency by combining MobileNet and NextViT
outperformed AlphaZero by about 30 Elo. However, we propose a
practical improvement that involves a simple change in the input rep-
resentation and value loss functions. As a result, we achieve a signif-
icant performance boost of up to 180 Elo points beyond what is cur-
rently achievable with AlphaZero in chess. In addition to these im-
provements, our experimental results using the Integrated Gradient
technique confirm the effectiveness of the newly introduced features.

1 Introduction

Transformers, a neural network architecture introduced in 2017
by Vaswani et al. [31], have become one of the most dominant
paradigms in modern Artificial Intelligence (AI). Their range of ap-
plications has rapidly expanded, making them prevalent in tasks re-
lated to many areas of Al, including natural language processing,
computer vision, and multimodal context learning. By employing
self-attention mechanisms, they differentiate themselves from tradi-
tional Convolutional Neural Networks (CNNs). This distinctive at-
tribute allows the network to dynamically assess the significance of
individual elements within the input sequence, providing an alterna-
tive to the limitations of sequential processing or fixed-size context
windows. The rise in popularity of transformers can be attributed to
their proficiency in handling long-range dependencies, a crucial char-
acteristic of computer vision. For this reason, transformer models are
now favored over classical CNN approaches in various domains, in-
cluding computer vision [6].

* Corresponding Author. Email: johannes.czech@cs.tu-darmstadt.de

In the field of Reinforcement Learning (RL), transformers hold
great promise for creating robust models that can solve complex de-
cision problems [2, 14]. These models can depict the connections and
correlations between sequences of observations, actions, and rewards
in the context of RL. They can be used to model the state representa-
tion, policy, and value function objectively [12, 18]. In addition, they
showcase superior performance as general world models [19].

The Transformer architecture is known for its impressive perfor-
mance and versatility and has been compared to the “Swiss Army
Knife” of Al. However, the question remains: does it really live up
to this analogy? Relying on transformers solely due to their grow-
ing popularity across various domains does not necessarily lead to
improvements. As demonstrated by Siebenborn et al. [24], the ef-
fect of transformer architecture on specific applications, including
continuous control tasks, can result in differing outcomes. Their re-
search found superior results by replacing the transformer with a
Long Short-Term Memory network (LSTM). This emphasizes the
nuanced nature of the transformer’s suitability. While their capabil-
ities are undeniable, the substantial scale of transformers, demand-
ing billions of parameters for peak performance, imposes additional
constraints. Substantial computational resources and memory are re-
quired, resulting in high latency and efficiency maintenance chal-
lenges [21, 33]. These limitations become particularly significant in
scenarios such as chess, where minimizing latency is crucial for com-
putational efficiency. This paper assesses the capabilities of trans-
formers in playing chess, a benchmark game in the field of Al. A
popular SOTA chess Al architecture is AlphaZero, as introduced by
Silver et al. [26, 25]. The methodology seamlessly integrates neural
networks with Monte-Carlo tree search (MCTS) [15]. AlphaZero is
appealing because it can learn from scratch, adapt to new challenges,
and consistently perform well. In this paper, we present AlphaVile!,

1 For more exhaustive information regarding our network architectures, in-
put representations, and value loss formulations, please check our supple-
mentary material on arXiv [4] and code on GitHub: https://github.com/
QueensGambit/CrazyAra/releases/tag/1.0.4, accessed on 2023-10-26.
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Figure 1.

Architectural Overview of the Predictor Network in AlphaVile. The Mobile Convolutional Block (MCB) is inspired by Sandler et al.’s work [23],

while the Next Transformer Block (NTB) is integrated from Li et al.’s research [17]. The parameter B denotes the number of hybrid blocks within the
architecture, offering scalability to the model. Our standard AlphaVile model employs ten MCBs in Stage 1 (N7 = 10) and two Stage 2 Blocks (B = 2). Each
Stage 2 Block consists of seven MCBs (/N2 = 7) and one NTB.

a novel convolutional transformer hybrid network. Incorporating a
ViT within the AlphaZero system enables testing of the potential of
utilizing transformers and CNNs together to enhance chess perfor-
mance.

Although it is commonly believed that “deep learning removes the
need for feature engineering”, as argued by Francois Chollet in his
book [3], we believe that modifications to feature representation can
generate improvements for methods such as AlphaZero. It can help
us in achieving similar goals as “exploring the agent state space and
having diverse agents with a heterogeneous skill set”, which can lead
to "creative", broader and more diverse agent behavior [27]. Further,
adding useful information to the features, i.e., the moves left in a
chess game, can play a crucial role in making progress on an ad-
vanced chess task, outperforming much larger neural networks [27].

In addition to making architectural changes, we are investigating
potential enhancements regarding the feature representation. We be-
gin by introducing AlphaVile and providing the necessary context.
We then discuss the improved input representation and value loss,
followed by presenting our empirical evaluation, which highlights
the significant impact of our extended representation. Finally, we go
over related work and draw a conclusion.

2 AlphaVile: Integrating transformers into
AlphaZero

AlphaZero, as introduced by Silver et al. [26, 25], represents a well-
established model-based RL approach. Its primary strength is rooted
in its ability to make predictions about the likely course of a given
situation through the use of Monte-Carlo Tree Search (MCTS) [15]
with an innovative integration of neural networks. Specifically, we
make use of Prediction Upper Confidence bounds for Trees algorithm
(PUCT) that was later refined in AlphaZero. For a detailed descrip-
tion of the PUCT algorithm, see [27].

Our approach centers on the substitution of the residual network
architecture (ResNet) [10], a framework heavily reliant on convo-
lutional layers, with a transformer-based architecture. Notably, ele-
ments such as the Monte-Carlo Tree Search (MCTS) algorithm and
the loss function:

t=alz—v* —x"logp+c- 6|3, )

remain consistent with the original AlphaZero design. Here, [z — v]?
quantifies the mean squared error between the actual game outcome,

denoted as z, and the predicted value v. Similarly, 7 " log p repre-
sents the cross-entropy between the target policy vector 7 and our
predicted vector p, a configuration adopted from Silver et al. [26].
To further refine our model, we use the scalar parameter «, serving
as a weighting factor for the value loss. In our experiments, we set
to 0.01, a choice made to mitigate the risk of overfitting.

As can be seen in Figure 1, AlphaVile is the result of a synergis-
tic fusion of components from AlphaZero [26], NextViT [17], and
MobileNet [11]. Our approach is based on the Next Hybrid Strategy
as explained by Li et al. [17]. In this strategy, a single transformer
block is coupled with multiple convolutional blocks. The architec-
tural configuration is further trimmed for optimal performance using
TensorRT by combining different blocks and operations into a sin-
gle block. This is motivated by the work of Dosovitskiy et al. [6]
who conducted a comparative analysis that placed their vision ViT
architecture in competition with SOTA ResNet [10] and Efficient-
Net [29] architectures, both reliant on CNNs. Their evaluation yields
results that showcase ViT’s superior performance in image classifica-
tion tasks, particularly on well-established benchmark datasets such
as ImageNet and CIFAR. Subsequently, Han et al. [9] extend this ex-
ploration with another comprehensive evaluation, once again com-
paring ViT architectures to contemporary CNN-based counterparts.
However, their study also highlights the concern of efficiency. Trans-
former models, by design, tend to be extensive and computationally
more demanding than their CNN-based counterparts, often requir-
ing extensive datasets for training. Han et al. emphasizes the sym-
biotic relationship that emerges when CNN and transformer models
are combined. Efforts are also being made to tackle the efficiency
issues of ViTs, with a focus on improving performance. Innovations
such as TensorRT as well as specially tailored architectures such as
Trt-ViT [33] and NextViT [17] are contributing to the ongoing search
for efficiency improvements.

In the context of CNNs, the MobileNet architecture was devel-
oped by Howard et al. [11]. MobileNet innovatively combines depth-
wise separable convolutions with pointwise convolutions to reduce
the computational overhead and memory demands typically associ-
ated with traditional CNNgs, all while preserving high accuracy. Mo-
bileNets have consistently demonstrated their capability to achieve
accuracy across a spectrum of computer vision tasks, all the while
exhibiting significantly enhanced speed and memory efficiency com-
pared to conventional CNNs. These characteristics make MobileNet
a particularly well-suited choice for integration within the AlphaZero
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Figure 2. Comparing Architectural Components of Convolution-Based
Blocks. This diagram utilises "DW" to denote Depthwise Convolution.
Batchnorm and ReL.U layers have been omitted for clarity. The conventional
residual block, initiated by He et al. [10], is substituted in AlphaVile with the
mobile convolution block, found in MobileNet, as stated by Sandler et
al. [23]. Additionally, we make use of the next convolution block originally
introduced in NextViT by Li et al. [17]

framework. Various iterations of MobileNet have been introduced,
including MobileNetV2 and MobileNetV3, each bringing additional
optimizations and enhancements to the original architecture. For our
work, we leverage the mobile convolution block, as presented in Mo-
bileNetV2 and reutilized in MobileNetV3.

Further, we employ stochastic depth techniques [13]. This strat-
egy serves a dual purpose, accelerating the training process while
enhancing convergence. Additionally, we implement a scaling tech-
nique adapted from EfficientNet [29], which facilitates the genera-
tion of networks in varying sizes to suit our needs. More details on
this can be found in the supplementary materials section [4].

To assess the performance of AlphaVile, our evaluation begins
with a comparative analysis of the MobileNet block compared to
ResNet [10] and the “Next Convolution Block”, a component that
outperformed the ConvNext Transformer, PoolFormer, and Uni-
former blocks in the study conducted by Li et al. [17]. These three
convolutional blocks are visually represented in Figure 2. Notably,
the mobile convolutional block [23] demonstrates a slightly superior
performance compared to the classical residual block [10], while the
next convolutional block [17] exhibits notably inferior results under
equivalent latency constraints. Consequently, based on experimental
results in Table 1, we select the mobile convolutional block as the
default convolutional base block for AlphaVile.

Our investigation regarding the combination of convolutional base
blocks with transformer blocks covers different sets of transformer
blocks according to the integration strategy presented in Table 2.
Following the proposal by Li et al. [17], we place a single trans-
former block after a given number of convolutional blocks, rather
than grouping all transformer blocks at the end of the network. For ar-
chitectures with 15 convolutional blocks, our study shows that spar-
sity predominates. Smaller quantities of transformer blocks show
better results compared to their more numerous counterparts. The
configuration with precisely two transformer blocks is the optimal
choice and yields the best results. After introducing the AlphaVile
architecture, we now turn to the importance of representation.

3 AlphaVile-FX: The importance of representation

In AlphaZero, the traditional representation of the game state is a nu-
anced art. It manifests as a stack of planes, each of which encodes a
particular facet of the complex state of the chessboard. These planes
are structured as an 8 x 8 grid, with each cell serving as a single

square on the chessboard. Within this framework, there are two dis-
tinct plane types: bool and int. The first type describes planes where
the value of each square is restricted to binary limits, i.e. 0 or 1. As
an illustrative example, the first plane indicates the areas occupied
by the first player’s pawns, where the value 1 indicates their pres-
ence and 0 their absence. In contrast, the int planes deal with integer
numbers and provide a range of values instead of a binary contrast,
e. g. the no-progress counter value is set on the entire 22nd plane. To
improve computational robustness and numerical stability, these int
features are thoughtfully scaled to cover the floating point range from
—1to 1, using the extreme feature values as the reference points. The
original representation (Inputs V1.0) and can be found in Table 3. In
total, Inputs V1.0 comprises 39 planes and gives our input a multidi-
mensional structure: a tensor with dimensions 39 x 8 x 8.

3.1 Expanding the input representation

It is a generally accepted principle that the role of representation is
central to traditional machine learning, but there is an ongoing dis-
cussion about its importance in the field of deep learning. In this
paper, we present a novel interpretation, as shown in both the top
and bottom segments of Table 3, of the input by introducing ad-
ditional features into the existing framework while also removing
two features. We exclude the color information as this can distort
the evaluation in favor of the White player regardless of the under-
lying position, as White has often an advantage in chess positions.
The differentiation between the active player to move and the op-
ponent player still persists. Moreover, we remove the current move
number, but not the no-progress counter for the 50 move rule. Addi-
tionally, we add several features including two masks for all pieces
of each player, a checkerboard pattern, the relative material differ-
ence, a boolean map signaling if there are opposite color bishops, all
checking pieces and the overall material count of the current player.
The new input definition brings significant improvements, particu-
larly regarding policy and value loss functions. We argue that these
supplementary features, though derivable from existing features, en-
hance the network’s capacity by providing essential information in
advance, thereby eliminating the need for in-network computations.
Table 4 presents evidence that highlights the significance of feature
engineering, leading to an advantage of about 100 Elo and demon-
strating its continued relevance in the realm of deep neural networks.

3.2 Redefining the value loss representation

In order to boost the performance of chess engines, it is necessary
to improve the quality of chess engines’ ability to evaluate a given
position. Taking inspiration from [27], where it was shown that
the approach led to performance improvements on a dataset called
chess fortresses, we explore an inventive method advocated by Hen-
rik Forstén, embodied by the Win-Draw-Loss-Head (WDL) frame-
work?. This framework accurately predicts the percentage distribu-
tion of winning, drawing, and losing scenarios, while also introduc-
ing the Moves Left Head® to forecast the remaining number of moves
until the game’s completion. To achieve this, we have incorporated an
additional output into the value head. This enhanced model, dubbed
the WDLP Value Head, accurately predicts the number of half moves
left until the conclusive end of the game. Originally developed for

2 Further information can be found at https://github.com/LeelaChessZero/lc0/
pull/635, accessed on 2022-11-11.

3 Further details can be accessed at https:/github.com/LeelaChessZero/lc0/
pull/961, accessed on 2022-11-11.



Table 1.

Training Results for Comparing Convolutional Blocks in the Core of the Model. The mobile convolutional block, with an expansion ratio of three,

outperforms the classical residual block and notably surpasses the next convolutional block. Furthermore, all three configurations exhibit similar latency on the
GPU. The best results are highlighted in bold.

Convolutional Block Blocks Channels Combined Loss  Policy Acc. (%) Latency (us)
Classical residual block [10] 10 192 1.2350 4 0.0031 57.50 £ 0.14 36.17
Mobile conv. block [23] 9 256 1.2343 + 0.0023 57.53 £ 0.05 34.78
Next conv. block[17] 10 256 1.2411 £ 0.0009 57.33 £ 0.05 34.84

Table 2. Grid Search Results for Different Transformer Block Configurations within the AlphaVile Model, as Shown in Figure 1. Optimal performance,
highlighted in bold, is achieved by including two level 2 blocks (B). The number of mobile blocks (N1, N2) is adjusted carefully to ensure the comparability
of the models. The number of Transformer Blocks (NTBs) is set according to B.

#Stage 2 Blocks (B) N1 Ny Combined Loss  Policy Acc. (%)  Latency (ys)
0 18 0 1.1901 4 0.0049 58.67 £0.17 53.54
1 8 8 1.1920 4 0.0021 58.57 £0.17 54.40
2 5 5 1.1887 £ 0.0065 58.67 £ 0.12 54.86
3 5 4 1.2061 4+ 0.0140 58.30 £ 0.43 54.67
4 4 3 1.2327 4 0.0045 57.57 £0.47 52.68

finishing off won endgames, Steingrimsson [27] discovered that the
WDL approach is suitable more generally for complex chess tasks.

The following equation derives the classic value output (v). The
parameter is bounded within the interval [—1, +1] and derived from
the interplay of Loutput and Woutput:

v = _Loutput + Woutput . (2)

In this formulation, Loy¢p¢ indicates the likelihood of experienc-
ing a defeat in the game, while Woy¢pu¢ depicts the probability of
achieving victory. To validate our findings empirically, we refer to
the information extracted from Table 5. The results clearly demon-
strate the advantages of this novel weight loss approach, leading to a
33 Elo improvement.

In this redefined framework, we employ a consistent value policy
loss, which is accompanied by an auxiliary goal of the remaining
number of plies. This results in a significantly transformed loss func-
tion

¢ = —a(WDL," log WDL,)—m " log p+B(plyi—ply,)*+cl|6]3

3
employing WDL,, a probability distribution that predicts the prob-
abilities of win, draw, or loss, while WDL, defines the target distri-
bution. Within this framework, the scalar parameters o and 3 allow
weighting each loss component.

Our experiments reveal that the incorporation of input features and
optimization of the loss function enhance performance, leading to an
improvement in both loss and accuracy. Therefore, we introduce the
"FX" suffix to indicate our Feature eXtension — a combination of
the expanded input representation and the WDLP value head.

4 Investigating the significance of representation in
chess mastery

This section presents an empirical study of the AlphaZero, AlphaVile
models and their “-FX” variants. We test these across the dimen-
sions of accuracy, latency, and overall playing strength while provid-
ing comprehensive context through comparative assessments against
other baseline models. Each experimental investigation adheres to a
carefully defined set of training hyperparameters, as detailed in the
supplementary materials [4]. Our research efforts are strengthened
by using three different seeds in our different configurations. We uti-
lize the KingBase Lite 2019 dataset* as for training chess networks.
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Figure 3. A comparison between AlphaVile and other efficient neural
network architectures, with a focus on achieving an optimal balance between
accuracy and latency. The results were obtained from three independent seed

runs.

This extensive collection of chess data comprises of more than one
million games played by expert human players since 2000, each with
an Elo rating of over 2200. Furthermore, our scientific exploration
includes an ablation study in the field of alternative chess variations,
in particular atomic and crazyhouse. Utilizing the lichess.org variant
database’, we extract and examine data from the top decile of players.
This approach provides a valuable perspective on model performance
in diverse and challenging chess scenarios. The latency evaluation is
performed on a NVIDIA GeForce RTX 2070 OC, using a batch size
of 64 and benefiting from the advanced TensorRT-8.0.1.6 backend
for accelerating throughput.

4.1 Trade-off between efficiency and accuracy

As Han et al. [9] demonstrate that the integration of transformers
is widely praised for its versatility, but also presents inherent la-
tency concerns. This is particularly noticeable in competitive con-
texts where precision and swift processing of large datasets are of im-
portance. To decrease latency without sacrificing accuracy, we sug-
gest combining convolutional base blocks and transformer blocks
in our architecture. We present four different configurations of our
AlphaVile architecture to illustrate the impact of network size on la-
tency, as detailed in Table 6.

4 https://archive.org/details/KingBaseLite2019, accessed on 2022-11-02

5 https://database.lichess.org/\#variant_games, accessed on 2023-10-23



Table 3. Plane-based Feature Representation for Chess (Inputs V1.0). Features are encoded as binary maps, and specific features are indicated with * as
single values applied across the entire 8 X 8 plane. The historical context is captured as a trajectory spanning the last eight moves. The table begins with
traditional input features (listed above the horizontal line). The extended input representation (Inputs V.2.0) incorporates additional features below the
horizontal line, while omitting two features marked with strike-through.

Feature Planes Type Comment

P1 pieces 6 bool order: {PAWN, KNIGHT, BISHOP, ROOK, QUEEN, KING}
P2 pieces 6 bool order: {PAWN, KNIGHT, BISHOP, ROOK, QUEEN, KING}
Repetitions” 2 bool  how often the board positions has occurred

En-passant square 1 bool  the square where en-passant capture is possible

Color” 1 bool  all zeros for black and all ones for white
Totat-move-count” 1 int integer value setting the move count (UCI notation)

P1 castling* 2 bool binary plane, order: {KING_SIDE, QUEEN_SIDE}

P2 castling* 2 bool binary plane, order: {KING_SIDE, QUEEN_SIDE}
No-progress count” 1 int sets the no progress counter (FEN halfmove clock)

Last Moves 16 bool  origin and target squares of the last eight moves

is960" 1 bool if the 960 variant is active

P1 pieces 1 bool  grouped mask of all P1 pieces

P2 pieces 1 bool  grouped mask of all P2 pieces

Checkerboard 1 bool  chess board pattern

P1 Material difference” 5 int order: {PAWN, KNIGHT, BISHOP, ROOK, QUEEN}
Opposite color bishops” 1 bool if they are only two bishops of opposite color

Checkers 1 bool  all pieces giving check

P1 material count” 5 int order: {PAWN, KNIGHT, BISHOP, ROOK, QUEEN}
Total 39/52

Table 4. Understanding the Impact of Input Representations on Performance Metrics. This table presents experimental results from different input
representations, highlighting their impact on value and policy loss. The adapted Inputs V.2.0 is shown to be the most sophisticated, signaling the ongoing quest
for optimization.

Input Representation = Combined Loss  Policy Acc. (%) Value Loss Latency (us)  Elo Difference
Inputs V.1.0 1.1918 4+ 0.0028 58.63 + 0.05 0.4448 + 0.0007 52.08 -
Inputs V.2.0 1.1901 + 0.0049 58.67 + 0.17 0.4371 + 0.0002 53.54 96.7 + 304

We begin our investigation by examining the performance of a
fully transformer-based neural network, the ViT [6], when integrated
with AlphaZero. In order to ensure a fair comparison of latency, we
trimmed these ViT models to match the latency of our AlphaVile
architecture, as employing a ViT model with an equivalent num-
ber of blocks would considerably increase latency. A comparison
of these networks is and depicted in Figure 3. These networks dis-
play a relatively high loss and decreased accuracy when compared
to AlphaZero. Consequently, we start incorporating convolutional
and transformer blocks. This assessment incorporates LeViT [8],
NextViT [17], and our proposed AlphaVile design. These strategies
offer a better solution than the ViT-based approach and deliver better
outcomes than AlphaZero.

4.2 Comparative assessment of playing strength

In order to evaluate the playing strength of our ViT models, we con-
ducted a comprehensive round-robin tournament, in which we pit-
ted AlphaVile, ViT, and AlphaZero* against each other. AlphaZero*
here relates to a reimplementation of AlphaZero in the form of Clas-
sicAra using the same model architecture as AlphaZero. The results
of this tournament are graphically illustrated in Figure 4. The ViT
model falls short of matching the playing strength achieved by Alp-
haZero* and AlphaVile. This outcome is consistent with the results
presented in Figure 3, which highlights the computational disparities
between ViTs and our other models. AlphaVile-FX slightly outper-
form the AlphaZero*-FX version by about 30 Elo. Elo is a metric
that measures the relative playing strength difference. We set our
baseline Elo rating to 0 Elo, which refers to the weakest partici-
pant, here ViT, in our tournament. We refrain from using a base-

line Elo rating from ClassicAra from engine rating lists, because we
were testing on a different hardware than used for creating the engine
list. ClassicAra-1.0.1 participated at the Top Chess Engine Champi-
onship (TCEC) season 23 and achieved an Elo rating of 3279, com-
pared to Stockfish-dev16 (3625), LCZero-0.30 (3599). We also add
Stockfish 16.1-NNUE (15k nodes per move) and FairyStockfish 14-
NNUE (50k nodes and 40k per move) as horizontal lines to Figure 4
to make the results more comparable. The modifications to the in-
put and loss representations in our study are substantial, leading to a
significant increase in playing ability. In particular, the modification
improves the performance of AlphaZero* by 180 Elo points in chess.
A lessened increase is evident in chess variants, such as crazyhouse
(Figure 4b) and atomic chess (Figure 4c). This emphasizes the signif-
icance of these changes, which are apparent in the enhanced playing
strength across chess variants. Opening suites were incorporated into
the gameplay to introduce a range of game scenarios.

4.3 Interpretability of FX-features

Next, we investigate the interpretability of the FX features and their
influence on the model. To determine the importance of each feature
channel, we use the Integrated Gradients (IG) method, a widely ac-
cepted technique in the field of neural networks’ interpretability [28].
We calculate the average attribution of each channel to the model’s
output value. It is crucial to establish an appropriate baseline for com-
puting gradients. In Figure 5, we utilize the mean of all validation
input features.

Our analysis shows that the newly introduced feature channels
within the FX representation have significant utility. Some feature
channels display positive attribution, while others exert a negative



Table 5. Finding the Optimal Value Head for Chess Engines. This table reveals the results of two value head types. The Win-Draw-Loss-Ply (WDLP) value
head emerges as the winner.

Value Head Type = Combined Loss  Policy Acc. (%) Value Loss Latency (1s)  Elo Difference
MSE 1.1933 £ 0.0021 58.50 & 0.08 0.4406 + 0.0002 53.35 -
WDLP 1.1901 £ 0.0051 58.73 £ 0.12 0.4356 + 0.0006 53.38 332+19.0
Table 6. Architectural Configurations of AlphaVile in Different Sizes.
. . L 1000
Note: All versions feature a channel expansion ratio of 2 and use a
combination of 50 % 33 and 50 % 5x5 convolutions. We use base channel
counts that are dividable by 32 for faster inference. 800
Size B N; N2  #Blocks Base Channels LL; 600 5
AlphaVile (tiny) 1 8 6 15 192 2 v Stockfish 16.1-NNUE A
AlphaVile (small) 1 11 10 22 192 5 400 (15k Nodes) —e— AlphaVile-FX
AlphaVile (normal) 2 10 7 26 224 g "®- AlphaVile
AlphaVile (large) 2 13 11 37 224 200 —¥— AlphaZero*-FX
‘¥ AlphaZero*
. . . . . VIT-FX
influence. This observation supports the logical assumption that a 0 VIT
greater number of the opponent’s pieces corresponds to a lower value
loss. Our analysis suggests, interestingly, that the color channel and 250 500 750 1000 1250 1500
. . . .. . . Movetime [ms]
move history information are of limited importance, as shown in the
second graph. Additionally, it seems that the king’s position is of low (a) Performance evaluation in chess.
relevance. This may be misleading, as the king is always present,
and a weak or strong king’s position has either a positive or negative 1000
influence on the value target. The IG method highlights the signif-
icance of the player 1 and player 2 masks as the most influential 800
feature channels of the FX-Features. Their integration, in conjunc-
tion with the refined value loss representation, significantly improves o 600 d
the evaluation of endgames with opposite-colored bishops, as further a FairyStockfish 14-NNUE
laborated in th dix [4] = (50k Nodes)
elaborated in the appendix [4]. 2 100
£
5 Related Work 200
Originally created for supervised learning tasks, transformers have 0

been widely adopted across multiple domains, such as natural lan-
guage processing and computer vision. In the realm of RL, where se-
quential decision-making is crucial, the usage of transformers has be-
come an active area of research [14]. The primary goal of combining
transformers and RL is to model and, in several instances, improve
decision-making by utilizing attention mechanisms. The sequential
nature of RL tasks makes transformers a flexible framework for ad-
dressing them. Several approaches have been suggested to overcome
the gap between transformers and RL, including enhancements in
architecture and trajectory optimization strategies [12].

Currently, the Trajectory Transformer [14] and Decision Trans-
former [2] are among the prominent paradigms. For a thorough com-
prehension of the combination of transformers and RL, we suggest
studying the insightful surveys by Li et al. [18] and Hu et al. [12].

Recent work [7] has shown that utilizing classification-based ap-
proaches is generally superior to alternative regression-based ap-
proaches. Game-specific features have also been found to be bene-
ficial for the game of Go [32].

The utilization of transformers in chess-related tasks has previ-
ously been explored in the literature [5, 20, 30], albeit these in-
vestigations differ significantly from our approach. Previous studies
mainly utilized Large Language Models (LLMs) and analyzed chess
problems from a linguistic perspective. They particularly relied on
techniques like Portable Game Notation (PGN) and area-specific ter-
minology to represent chess positions textually. A recent paper [22]
explores the utilization of transformer without search and achieves
grandmaster-level performance. Although these attempts succeeded
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(c) Comparative analysis of playing strength in atomic chess.

Figure 4. The AlphaZero-FX network showcases excellent performance in
chess (4a), crazyhouse (4b), and atomic chess (4c), surpassing the vanilla
version using Input Representation Version 1 without the WDLP head. The
performance increase in chess is noteworthy, with an increase of 180 Elo
point. The performance level of the AlphaVile network is comparable to that
of the AlphaZero network, especially at longer move times.
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(b) Analysis of the average importance of FX features.

Figure 5. The newly introduced FX-features demonstrate significant usage, highlighted by the Integrated Gradients (IG) method for feature importance
analysis. In the conventional input representation (5a), both positive and negative feature attributions are predominantly related to piece maps. In the enhanced
input representation presented in (5b), supplementary features are incorporated, while two features marked with strike-threugh are omitted. The IG method
uses the average of all inputs as a baseline for the attribution calculation.

in teaching the regulations of chess, they did not achieve the play-
ing skills demonstrated by AlphaZero. In another line of research,
the use of transformers in chess has also been envisioned to produce
annotations on chess positions, with the objective of enhancing the
comprehensibility and traceability of chess analysis [16]. Steingrims-
son [27] demonstrated through rigorous experiments on an advanced
chess benchmark which SOTA chess architectures still struggle with,
the crucial role of neural architecture improvements. This consisted
of broader output variables. They also emphasized the importance of
behavioral diversity among agents, which led to creative and varied
chess strategies and experiments with additional heads. In this work,
we take the next step, exploring input features and their representa-
tion.

6 Conclusion

Our study has shown that an optimized input representation and value
loss definition significantly enhance the playing strength of chess
Als. Despite the prevailing belief that feature engineering has de-
creased in relevance with the emergence of deep learning networks,
our findings challenge this assumption. Our new input representation
includes novel characteristics that arise from the combination of ex-
isting features, including material difference and material count. Ad-
ditionally, there are implicit features derived from the basic rules of

chess, such as pieces giving check and the identification of bishops of
opposite colors. Transformers are a versatile tool for Al recognized
for their ability to process global features and effectively handle ex-
tended input sequences, thanks to their use of attention mechanisms.
However, their applicability in specific domains such as timed com-
petitive games, like chess, leads to unique challenges beyond accu-
racy. In such contexts, efficiency is paramount. Efforts to improve
the performance of ViTs in chess Al by fusing them with CNNs
aimed to exploit the latter’s efficient pattern recognition capabilities.
Addressing the latency issues typically associated with transformers,
these hybrid models generated slightly superior results compared to
the pure convolutional network baseline, AlphaZero. Furthermore,
custom-made transformers that cater to the specific requirements of
chess may improve performance. Ongoing experiments carried out
by the LcO developer team in this area demonstrate potential, al-
though further study is required and is outside the scope of this paper.
We maintain that transformers hold substantial promise for advanc-
ing the field of computer chess. Particularly, their potential appli-
cations in areas such as multimodal inputs [34] and retrieval-based
approaches [1] may open new avenues for enhancing the capabili-
ties of computer chess engines. Our findings underscore the endur-
ing importance of feature engineering, negating any suggestion of its
becoming obsolete and proposing that it remains “forever young”.
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