Sum-Product Networks*

The Third Wave of Differentiable Programming

*Thanks for Pedro Domingos for making his slides publically available

Alejandro Molina, Antonio Vergari, Karl Stelzner, Robert Peharz, Pranav Subramani, Nicola Di Mauro, Pascal Poupart, Kristian Kersting: **SPFlow: An Easy and Extensible Library for Deep Probabilistic Learning using Sum-Product Networks**. CoRR abs/1901.03704 (2019)

AI has impact

Data are now ubiquitous; there is great value from understanding this data, building models and making predictions However, data is not everything

The third wave of Al

Data are now ubiquitous; there is great value from understanding this data, building models and making predictions However, data is not everything

Al systems that can acquire human-like communication and reasoning capabilities, with the ability to recognise new situations and adapt to them.

Deep Neural Networks

Potentially much more powerful than shallow architectures, represent computations

[LeCun, Bengio, Hinton Nature 521, 436-444, 2015]

Differentiable Programming

Markov Chain (MC)

DNNs often have no probabilistic semantics. They are not $P(Y|X) \neq P(Y,X)$ calibrated joint distributions.

MNIST て、9562 ノス5006

SVHN

SEMEION

Train & Evaluate

Transfer Testing [Bradshaw et al. arXiv:1707.02476 2017]

Many DNNs cannot distinguish the datasets

[Peharz, Vergari, Molina, Stelzner, Trapp, Kersting, Ghahramani UDL@UAI 2018]

The third wave of differentiable programming

Getting deep systems that know when they do not know and, hence, recognise new situations and adapt to them

Can we borrow ideas from differentiable programming for probabilistic graphical models?

Judea Pearl, UCLA Turing Award 2012

Alternative Representation:

X_{I}	X_2	P (X)
1	1	0.4
1	0	0.2
0	1	0.1
0	0	0.3

$$P(X) = 0.4 \cdot I[X_1=1] \cdot I[X_2=1] + 0.2 \cdot I[X_1=1] \cdot I[X_2=0] + 0.1 \cdot I[X_1=0] \cdot I[X_2=1] + 0.3 \cdot I[X_1=0] \cdot I[X_2=0]$$

Alternative Representation:

X_{I}	X_2	P (X)
1	1	0.4
1	0	0.2
0	1	0.1
0	0	0.3

$$P(X) = 0.4 \cdot I[X_1=1] \cdot I[X_2=1]$$

+ 0.2 \cdot I[X_1=1] \cdot I[X_2=0]
+ 0.1 \cdot I[X_1=0] \cdot I[X_2=1]
+ 0.3 \cdot I[X_1=0] \cdot I[X_2=0]

Shorthand using Indicators

X_1	X_2	P (X)
1	1	0.4
1	0	0.2
0	1	0.1
0	0	0.3

$$P(X) = 0.4 \cdot X_1 \cdot X_2$$

+ 0.2 \cdot X_1 \cdot \overline{X_2}
+ 0.1 \cdot \overline{X_1} \cdot X_2
+ 0.3 \cdot \overline{X_1} \cdot \overline{X_2}

Summing Out Variables

Let us say, we want to compute $P(X_1 = 1)$

X_1	X_2	P (X)
1	1	0.4
1	0	0.2
0	1	0.1
0	0	0.3

$$P(e) = \mathbf{0.4} \cdot X_1 \cdot X_2$$
$$+ \mathbf{0.2} \cdot X_1 \cdot \overline{X_2}$$
$$+ 0.1 \cdot \overline{X_1} \cdot X_2$$
$$+ 0.3 \cdot \overline{X_1} \cdot \overline{X_2}$$

Set
$$X_1 = 1, \overline{X_1} = 0, X_2 = 1, \overline{X_2} = 1$$

Easy: Set both indicators of X2 to 1

This can be represented as a computational graph

network polynomial

However, the network polynomial of a distribution might be exponentially large

Example: Parity

Uniform distribution over states with even number of 1's

Make the computational graphs deep

Example: Parity

Uniform distribution over states with even number of 1's

Sum-Product Networks* a deep probabilistic learning framework [Poon, Domingos UAI 2011]

A SPN S is a rooted DAG where **nodes** are sum, product, input indicator and **weights** are on edges from the sums of children

*SPNs are an instance of Arithmetic Circuits (ACs). ACs have been introduced into the AI literature more than15 years ago as a tractable representation of probability distributions [Darwiche CACM 48(4):608-647 2001] c

Valid SPN: General Conditions

SPN is valid if $S(e) = \sum_{X \sim e} S(X)$ for all e. If so, we can compute (conditional) marginals efficiently since the partition function Z can be computed by setting all indicators to 1

Complete: Under sum, children cover the same set of variables

Consistent: Under product, no variable in one child and negation in another

Inference: Linear in Size of Network

As long as weights sum to 1 at each sum node P(X) = S(X)

MAP: Replace sums with maxs

Building challenging multivariate distributions from wellknown univariate distributions with flexible correlations,

here multivariate Poisson distribution

Unimodel mixtures

And also learning is simple. E.g. we can learn (the structure) via parameter estimation assuming a fixed network (like in Deep Neural Learning)

- Start with a dense SPN
- Find the structure by (online) learning weights Zero weights signify absence of connections
- (Hard) EM beneficial to avoid gradient vanishing Each sum node is a mixture over children

In principle you can turn a given SPN into, say, a TensorFlow computation graph and apply any known algorithm from there

Or we learn directly (Tree-)SPNs

Testing independence using a (non-parametric) independency test

Or we learn directly (Tree-)SPNs

Testing independence using a (non-parametric) independency test

Or we learn directly (Tree-)SPNs

Testing independence using a (non-parametric) independency test

[Poon, Domingos UAI'11; Molina, Natarajan, Kersting AAAI'17; Vergari, Peharz, Di Mauro, Molina, Kersting, Esposito AAAI '18; Molina, Vergari, Di Mauro, Esposito, Natarajan, Kersting AAAI '18]

SPFlow, an open-source Python library providing a simple interface to inference, learning and manipulation routines for deep and tractable probabilistic models called Sum-Product Networks (SPNs). The library allows one to quickly create SPNs both from data and through a domain specific language (DSL). It efficiently implements several probabilistic inference multiples like commuting matricels, coefficiently and (approximate) most explosed into (MDEs) along with commune.

Random sum-product networks

[Peharz, Vergari, Molina, Stelzner, Trapp, Kersting, Ghahramani UDL@UAI 2018]

Build a random SPN structure. This can be done in an informed way or completely at random

てえ63747365 outliers 7104149069 prototypes

J M Market Street Stree

prototypes

RAT-SPN MLP vMLP 10-3 MNIST MNIST 98.19 98.32 98.09 (8.5M) (2.64M) (5.28M) frequency SVHN F-MNIST 89.52 90.81 89.81 10^{-4} (0.65M) (9.28M) (1.07M)20-NG 47.8 49.05 48.81 SEMEION (0.37M) (0.31M) (0.16M) 10-5 0.0852 0.0874 0.0974 MNIST (17M)(0.82M) (0.22M) 10^{-6} F-MNIST 0.3525 0.2965 0.325 (0.65M) (0.82M) (0.29M) 20-NG 1.6954 1.6180 1.6263 (1.63M) (0.22M) (0.22M) -200000 -150000 -100000 -50000 0 input log likelihood

SPNs can have similar predictive performances as (simple) DNNs

SPNs can distinguish the datasets

SPNs know when they do not know by design

TECHNISCHE

UNIVERSITÄT DARMSTADT

SPNs closely related to well known, advanced ML models, e.g. Poisson SPNs = Hierarchical Topic Models

Poisson Multinomial SPN = hierachical topic model

SPNs feature distribution-agnostic deep probabilistic learning

Use nonparametric independency tests and piece-wise linear approximations of the univariate distributions in the leaves

Putting a little bit of structure into SPN models allows one to realize autoregressive deep models akin to PixelCNNs [van den Oord et al. NIPS 2016]

[Poon, Domingos UAI'11]

Learn Conditional SPN (CSPNs) by non-parametric conditional independence testing and conditional

clustering [Zhang et al. UAI 2011; Lee, Honovar UAI 2017; He et al. ICDM 2017; Zhang et al. AAAI 2018; Runge AISTATS 2018] encoded using gating functions

Conditional SPNs

[Shao, Molina, Vergari, Peharz, Kersting 2019]

gating functions

What have we learnt about SPNs?

Sum-product networks (SPNs)

- DAG of sums and products
- They are instances of Arithmetic Circuits (ACs)
- Compactly represent partition function
- Learn many layers of hidden variables

Efficient marginal inference

Easy learning

Can outperform well-known alternatives e.g. faster Attend-Infer-Repeat models [Stelzner, Peharz, Kersting ICML 2019]

