Sum-Product Networks* o
The Third Wave of Differentiable Programming
Kristian
e Kersting

*Thanks for Pedro Domingos for making his slides publically available

F L@ @ from spn.structure.leaves.parametric.Parametric import Categorical
”, spn = 0.4 * (Categorical(p=(0.2, 0.8], scope=0) *
N) (0.3 * (Categorical(p=[0.3, 0.7], scope=1) x
W @ @ Categorical(p=(0.4, 0.6], scope=2))
+ 0.7 * (Categorical(p=[0.5, 0.5], scope=1) x
Categorical(p=[0.6, 0.4], scope=2))))
+ 0.6 * (Categorical(p=[0.2, 0.8], scope=0) *

github.com/SPFlow
® ® ®
Categorical(p=[0.4, 0.6], scope=2))
A N

0.7

:OR
Y TEN : LIBRARY F ,
ND EXTENSIBLE pUCT NETWORKS

S
@ @ SRRV ‘iA‘SYR:mG USING SUM-PRO
1STIC LEARS
PROBABIL

//WT//
‘\moni.u:::ﬁf;c:.:?g‘ - |
dro Molina antonio. vergari®® '
:oh::::;\:n.'-?dar'.a',ait de - o

Raobert ﬁ'h‘f':‘u pasube u:edu,uwuv.enoa .ca
. . . i Karl .\'ulﬂ"‘"“wt 4 psBTOcas ac ‘ .

Alejandro Molina, Antonio Vergari, Karl Stelzner, Robert seaiznerdce. tu-dars S | Kot K e o0
Peharz, Pranav Subramani, Nicola Di Mauro, Pascal Poupart, | i s (4

. . . " = 4 o, TU uml\\ﬂ"l' xtl'r:ufzmm)
Kristian Kersting: SPFlow: An Easy and Extensible Library | ; o Compt S Dt Lt

st | ' e i o ety o O s
for Deep Probabilistic Learning using Sum-Product T e e e
Knowledge Nu:\llw‘“ ly;\u'.ulc‘\‘u\“ nstitute, | > \1"\31, Germany

Networks. CoRR abs/1901.03704 (2019) Ko A e, A T D

Al has impact

Data are now ubiquitous; there is great value from under-
standing this data, building models and making predictions

However, data is not everything

Kristian Kersting - Sum-Product Networks: The Third Wave of Differentiable Programming n

The third wave of Al

Data are now ubiquitous; there is great value from under-
standing this data, building models and making predictions

However, data is not everything

Al systems that can acquire
human-like communication and
reasoning capabilities, with the
ability to recognise new
situations and adapt to them.

Kristian Kersting - Sum-Product Networks: The Third Wave of Differentiable Programming

NATUICINSIGHT

Neuron

Differentiable Programming

C

[A K N N N N N N
PR FR% D 318
3 * £ &€ kR 3 B 3

(o]

.....

Potentially much more powerful than shallow
architectures, represent computations
[LeCun, Bengio, Hinton Nature 521, 436—444, 2015]

Neural Networks ..

DNNs often have no probabilistic

semantics._ They are not P(YlX) ¥ P(Y,X)

calibrated joint distributions.

MNIST SEMEIO
39L\V9 5602/ 8 Ly | o , 5
§9/7/7A5000 64
70636370
3777460 [2
2934939¢212¢
/6qQF3 6573
3 19/58§0#¢Y
sS&eLELEBS 8 899
37704 ¢ 3543
1961062 23 .

Train & Evaluate Transfer Testing
[Bradshaw et al. arXiv:1707.02476 2017]
— MNIST

5 SVHN
g 20 SEMEIOR Many DNNs cannot
© % - g .
= = distinguish the
= 1074

datasets

-100 0 100 200
Input log ,likelihood® (sum over outputs)
[Peharz, Vergari, Molina, Stelzner, Trapp, Kersting, Ghahramani UDL@UAI 2018]

The third wave of
differentiable programming

Getting deep systems that
know when they do not know
and, hence, recognise new
situations and adapt to them

Kristian Kersting - Sum-Product Networks: The Third Wave of Differentiable Programming n

Can we borrow ideas from
differentiable programming
for probabilistic graphical
models?

Judea Pearl, UCLA
Turing Award 2012

Alternative Representation:

5% TECHNISCHE

h.
_‘\, UNIVERSITAT

'~ DARMSTADT

Graphical Models as (Deep) Networks

X; | Xz | P(X)
1| 1] 04
1| o] 02
0| 1] 01
0| 0] 03

P(X)=0.4 - 1[X;=1]
I[X,=1
A[X,=0
A[X,=0

+0.2 -
+ 0.1
+0.3

[X=1]
[X=0
A[X=1"
[X=0

Kristian Kersting - Sum-Product Networks: The Third Wave of Differentiable Programming

Alternative Representation:

5% TECHNISCHE

IN=7
{@/ UNIVERSITAT

%9’ DARMSTADT

Graphical Models as (Deep) Networks

X; | Xz | P(X)
1| 1| 04
1| o] 02
0| 1] 01
0| 0] 03

P(X) = 0.4 - 1[X,=1] - [[X,=1]
I[X=1
[X=0
[X=0

+ 0.2 -
+ 0.1
+0.3

[X,=0
A[X=1
[X,=0

Kristian Kersting - Sum-Product Networks: The Third Wave of Differentiable Programming

Shorthand using Indicators

X; | Xz | P(X)
1| 1] 04
1| o] 02
0| 1] 01
0| 0] 03

PX)=04 X, - X,
+02-X; - X,
+0.1-X,- X,
+03-X, - X,

s&7, TECHNISCHE
A

;

UNIVERSITAT
DARMSTADT

Kristian Kersting - Sum-Product Networks: The Third Wave of Differentiable Programming

&5 TECHNISCHE
E(@T@e UNIVERSITAT
99’ DARMSTADT

Summing Out Variables

Let us say, we want to compute P(X;=1)

XI XZ P(X) P(e) — 0.4 . Xl . XZ
1| 1] 04 102X, .)—(2
1| o | 02 _
0| 1| o1 +0.1 ')_(1 {2
0|0 03 +0.3-X - X,

Set X,=1,X,=0/X,=1,X,=1

~

{ Easy: Set both indicators of X2 to 1

J

Kristian Kersting - Sum-Product Networks: The Third Wave of Differentiable Programming n

B2 TECHNISCHE

This can be represented as a £ Wi
computational graph

X; | Xz | P(X)
1| 1| 04
1|0 | 02
0| 1| 01
0| 0] 03

network polynomial

Kristian Kersting - Sum-Product Networks: The Third Wave of Differentiable Programming n

A”f" TECHNISCHE
)=\ UNIVERSITAT
*_ 7 DARMSTADT

However, the network polynomial of a
distribution might be exponentially large

Example: Parity
Uniform distribution over states with even number of 1’s

Kristian Kersting - Sum-Product Networks: The Third Wave of Differentiable Programming n

&% TECHNISCHE
SS=7#\ 55
7% UNIVERSITAT

27A

99 DARMSTADT

Make the computational graphs deep

Example: Parity
Uniform distribution over states with even number of 1’s

Induce many
hidden layers

Reuse partial computation

Kristian Kersting - Sum-Product Networks: The Third Wave of Differentiable Programming n

M B ' I H
Sum-Product Networks* w ?g :
a deep probabillistic learning N "

framework [Poon, Domingos UAI 2011]

Adnan
Darwiche
’ UCLA

A SPN S is a rooted DAG
where nodes are sum,
product, input indicator
and weights are on edges
from the sums of children

X, X, X, X,

*SPNs are an instance of Arithmetic Circuits (ACs). ACs have
been introduced into the Al literature more than15 years ago as a

tractable representation of probability distributions
[Darwiche CACM 48(4):608-647 2001] ¢

Valid SPN: General Conditions

SPN is valid if S(e) = Zx_. S(X) for all e. If so, we can compute
(conditional) marginals efficiently since the partition function Z
can be computed by setting all indicators to 1

Theorem: SPN is valid if it is complete & consistent

Complete: Under sum, children Consistent: Under product, no variable
cover the same set of variables in one child and negation in another

Incomplete Inconsistent

X, X,

S(€) < Zx.e S(X) S(€) = Zx.e S(X)

o)

Kristian Kersting - Sum-Product Networks: The Third Wave of Differentiable Programming n

&7 TECHNISCHE
Er@"e UNIVERSITAT
'~ DARMSTADT

Inference: Linear in Size of Network

o7
%

As long as weights sum to 1
at each sum node

P(X) = 5(X)

X:X;=1,X,=0
X 1 0.42
X, 0
X, 0 0.6
Y2 1 0.6

How to set the
indicator variables

Kristian Kersting - Sum-Product Networks: The Third Wave of Differentiable Programming n

Ssi74 TECHNISCHE

IS/ 7)A\ s

2i@/=\ UNIVERSITAT
I - DARMSTADT

Inference: Linear in Size of Network

Marginal: P(e) = S(e) ‘

0.69=0.51+0.18

e: X;=1
X, 1
X, 0
X, 1
X,]
HOYV to set the X, X, X, X,
iIndicator variables 1) | |

Kristian Kersting - Sum-Product Networks: The Third Wave of Differentiable Programming n

&7 TECHNISCHE
@Y=\ UNIVERSITAT

Inference: Linear in Size of Network

%'~ DARMSTADT

MAP: Replace sums with maxs

e: X, =1 0.7 x 0.42 = 0.294 MAX 0.3x0.72=0216

X, 1 0.42 0.72

X, 0

X, 1 0.6 7y 09 = =07 0.8

— 4 09 0.7 02

X5 1 0.6 ><I 01 03 \>< 0.8
How to set the X, X X, Y
indicator variables ! ?

1 0 1 1

Kristian Kersting - Sum-Product Networks: The Third Wave of Differentiable Programming n

Building challenging multivariate distributions from well-

known univariate distributions with flexible correlations,
here multivariate Poisson distribution

positive l ' negative l |

(a) """ (b) |~' (©) g

Unimodel mixtures

it L B4

@ g

© g O g

And also learning is simple. E.g. we can learn (the
structure) via parameter estimation assuming a
fixed network (like in Deep Neural Learning)

o Start with a dense SPN

* Find the structure by (online) learning weights
Zero weights signify absence of connections

* (Hard) EM beneficial to avoid gradient vanishing
Each sum node is a mixture over children

In principle you can turn a given SPN into, say, a
TensorFlow computation graph and apply any known
algorithm from there

Kristian Kersting - Sum-Product Networks: The Third Wave of Differentiable Programming n

[Poon, Domingos UAI'11; Molina, Natarajan, Kersting AAAI'17]

% TECHNISCHE

Or we learn directly (Tree-)SPNs @ i

Testing independence using a
(non-parametric) independency test

Word

Word Counts

D,

Documents

Kristian Kersting - Sum-Product Networks: The Third Wave of Differentiable Programming n

[Poon, Domingos UAI'11; Molina, Natarajan, Kersting AAAI'17]

S TECHNISCHE
gr@—/é UNIVERSITAT
Y9y~ DARMSTADT

Or we learn directly (Tree-)SPNs

Testing independence using a
(non-parametric) independency test

[Zeileis, Hothorn, Hornik Journal of Computational

And Graphical Statistics 17(2):492-514 2008] rd In general use the

independency test for

E.g. for Poisson RVs: your random variables
at hand such as g-test

for Gaussians

Learn Poisson model
trees for P(x|V-x) and
P(y|V-y). Check

whether X resp. Y is

significant in P(y|V-x)
resp. P(x|V-y)

Word Counts

D,

Kristian Kersting - Sum-Product Networks: The Third Wave of Differefitiable Programming n

Documents

[Poon, Domingos UAI'11; Molina, Natarajan, Kersting AAAI‘17]

&7 TECHNISCHE
/%) UNIVERSITAT
99’ DARMSTADT

Or we learn directly (Tree-)SPNs

Testing independence using a
(non-parametric) independency test

In general some
clustering for your rd
random variables at
hand such as kMeans
for Gaussians

i

Mixture of O

Poisson g

Dependency 8 Word Counts
A

Networks or
random splits

=D,

Kristian Kersting - Sum-Product Networks: The Third Wave of Differeftiable Programming n

[Poon, Domingos UAI'11; Molina, Natarajan, Kersting AAAI'17]

&7 TECHNISCHE
§/(6_/é UNIVERSITAT
()

Or we learn directly (Tree-)SPNs

99 DARMSTADT

Testing independence using a
(non-parametric) independency test

Clustering or
random splits

keep growing
alternatingly
and + |layers

Documertts

Kristian Kersting - Sum-Product Networks: The Third Wave of Differeftiable Programming

[Poon, Domingos UAI'11; Molina, Natarajan, Kersting AAAI'17; Vergari, Peharz, Di Mauro, Molina, Kersting, Esposito AAAI '18;
Molina, Vergari, Di Mauro, Esposito, Natarajan, Kersting AAAI 18]

FLED SPFlow: An Easy and Extensible Library
®W for Sum-Product Networks [0/ Ve Stelzner Penar

; UNIVERSITAT
' DARMSTADT

UNIVERSITA m UNIVERSITY OF Kersting 2019]
DSBS RARE @Y WATERLOO . MADESI
5 UNIVERSITYOF N\ 7" VECTOR

Federal Minist
¥ CAMBRIDGE \ INSTITUTE kG ® ‘ of Educstion

and Research

2 1995 comemets Vv 2 Branches 0 rvleases AL @ cominb

Rranch master » New pull reguest Creste rew e Upiced fles Find *le m
https://github.com/SPFlow/SPFlow

rom spn.structure.leaves.parametric.Parametric import Categorical - 'f' L
- Domain Specific Language,
rom spn,.structure.Base import Sum, Product
rom spn.structure.base import assign_ids, rebuild_scopes_bottom_up Inference, EM, and MOdeI
Selecti |
p@ = Product(children=|Categorical(p=[0.3, 9.7], scope=1), Categoricall(p=(0.4, 0.6], scope=2)]) e ec .Ion. as We as .
:; :Lr‘:?t:ct(mj'lga:}.‘?oncal(, [?p;: sl?]), scope=1), Categorical(p=[0.6, @.4), scope=2)]) Compllatlon Of SPNS Into TF
2 = P children=| 1 [6.2, 0.8], scope=d@),] -
5 o e teateor a2, ocen, e, e 0, en AN PYTOrch and also into flat,
p4 = Product(children=[p3, Categorical(p=[0.4, 9.6], pe=2)]) . .
library-free code even suitable
FRAeA1s Ao ot om. e for running on devices:

o C/C++,GPU, FPGA

SPFow, an open-source Python fbrary providing a simple interface to nference, learning and manipulation routines for
deep and tractable probabilistic models caled Sum-Product Networks (SPNs). The fbrary aliows one to quickly create SPNs
both from data and through a doman specfic language (DSL). it efficiently implemaents several probabilstic inderence

sn.tman llia casvna. titon sanssn'.snles sscndpsnale sed lavasscioatro snast sesanbhabla svalasnat s NINT A dlace wish sascealw

%54 TECHNISCHE
U7/~ UNIVERSITAT
7 DARMSTADT

Random sum-product networks

[Peharz, Vergari, Molina, Stelzner, Trapp, Kersting, Ghahramani UDL@UAI 2018]

e ol UNIVERSITY OF
UBER Al Labs B OV aars OF
F,.:/@ — Build a random SPN
(N XXl ‘- \ e AN X0 X { X3 X3 N2) S (X Xa Xa. Xa) StrUCtu re. ThiS Can be

done in an informed
D R O G OO D) way or Comp|ete|y at
EARE EIEY FAREEIES FARSEIEY EAEEEARY random

(X X NG X EXNG XX XS I X NG (XX) [N} (X3 Xa) (X3} (X X:) (X (XXX X) (XX

RAT-SPN MLP vMLP - .
MNIST ~ 98.19 9832 98.09 10—3 . MNIST \b -7 ’7 b O Utl |e I’S
2 FmNsT 53%551;4) (9%)-6841M) géslM) SVHN q / rotot es
5 ; / ; -4
Do B30 GR0 GR0 £ 10 SEMEION 4 f Protolyp

(0.37M) (0.31M) (0.16M)

MNIST 0.0852 0.0874 0.0974
(17M) (0.82M) (0.22M)

F-MNIST 0.3525 0.2965 0.325
(0.65M) (0.82M) (0.29M)

20-NG 1.6954 1.6180 1.6263

e (2M) (02240 —200000 —150000 —100000 —50000 0
input log likelihood

outliers
A prototypes

-
1
(=]

=g O
= o C

frequency
=] -
=] o¢
E

D

=hg <L

Cross-Entropy

SPNs can have

similar predictive
SPNs know when they do

performances as SPNs can distinguish the

(simple) DNNs not know by design

datasets

SPNs closely related to well known, advanced ML models,
e.g. Poisson SPNs = Hierarchical Topic Models

classifier 5\
ey) A=5.2
neural 0.54 0.92 @ 0.08
erFer___ \\\ network 0.46
trai :
learping motion 0.50
conteol /N, droctonosa|] 025
N, tation 0.16 '
/~al b learming 0.22
error 0.13
m % ‘ ike signal 0.3 we.ight 0.09
on_ \ component 0.3 | | train 0.07
P ey potential noise 0.23 concept 0.01
function channel 0.17 -
task System :
Mutual Information Poisson Multinomial SPN
(NIPS corpus) = hierachical topic model

Kristian Kersting - Sum-Product Networks: The Third Wave of Differentiable Programming n

[Molina, Natarajan, Vergari, Di Mauro, Esposito, Kersting AAAI 2018]

SPNs feature distribution-agnostic
deep probabilistic learning

Use nonparametric

No of unfinished Educations inde pen den Ccy tests
e and piece-wise linear
satisfaction Work approximations of the
uccess 8IS i e . univariate distributions in
the leaves
1Q
Satisfaction-Treatment | | "
s atisfactionMedication .| 0.004 — PWL, A= 0.1 |

PWL, A=l.0 “‘
- PWL, A:SO
GaUSSian |

Kristian Kersting - Sum-Product Networks: The Third Wave of Differentiable Programming n

Putting a little bit of structure into SPN models
allows one to realize autoregressive deep models

akin to PixelCNNs [van den Oord et al. NIPS 2016]

Learn Conditional SPN (CSPNs) by non-parametrlc
conditional independence testing and conditional

clustering [Zhang et al. UAI 2011; Lee, Honovar UAI 2017; He et
al. ICDM 2017; Zhang et al. AAAI 2018; Runge AISTATS 2018]

encoded using gating functions

Conditional SPNs

[Shao, Molina, Vergari, Peharz, Kersting 2019]

2o DEG

chain rule of
probabilities

CSPN P(k|k 1)

gating functions

gl(x

T

Gating funtions
encoded as deep

network Doy Feed Farwand (0FF)

Learn Conditional SPN (CSPNs) by non-parametric 9ating functions
conditional independence testing and conditional

clustering [Zhang et al. UAI 2011; Lee, Honovar UAI 2017; He et
al. ICDM 2017; Zhang et al. AAAI 2018; Runge AISTATS 2018]

encoded using gating functions

Conditional SPNs

[Shao, Molina, Vergari, Peharz, Kersting 2019]

CAML DFG

7 TECHNISCHE

What have we learnt about SPNs?(" 5=
Sum-product networks (SPNs)
* DAG of sums and products
* They are instances of Arithmetic Circuits (ACs)
» Compactly represent partition function
* Learn many layers of hidden variables

Efficient marginal inference
Easy learning

Can outperform well-known alternatives e.g.
faster Attend-Infer-Repeat models s::. rerar, kersing o 2019

Kristian Kersting - Sum-Product Networks: The Third Wave of Differentiable Programming n

TECHNISCHE
UNIVERSITAT
DARMSTADT

Kristian Kersting - Sum-Product Networks: The Third Wave of Differentiable Programming n

