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Data are now ubiquitous; there is great value from under-
standing this data, building models and making predictions

However, data is not everything

AI has impact

Handcrafted

1980

Learning

2010
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Data are now ubiquitous; there is great value from under-
standing this data, building models and making predictions

However, data is not everything

AI systems that can acquire
human-like communication and
reasoning capabilities, with the
ability to recognise new
situations and adapt to them.

The third wave of AI

Human-like

Handcrafted

1980

Learning

2010

soon
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Deep Neural Networks
Potentially much more powerful than shallow 
architectures, represent computations
[LeCun, Bengio, Hinton Nature 521, 436–444, 2015]

Neuron

Differentiable Programming
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SVHN SEMEIONMNIST

Train & Evaluate Transfer Testing
[Bradshaw et al. arXiv:1707.02476 2017]

DNNs often have no probabilistic
semantics. They are not 
calibrated joint distributions.

[Peharz, Vergari, Molina, Stelzner, Trapp, Kersting, Ghahramani UDL@UAI 2018]
Input log „likelihood“ (sum over outputs)

fre
qu

en
cy

P(Y|X) ≠ P(Y,X)

Many DNNs cannot
distinguish the

datasets
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Getting deep systems that
know when they do not know

and, hence, recognise new
situations and adapt to them

The third wave of
differentiable programming

Probabilities

Shallow

1970

Deep

2010

now
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Can we borrow ideas from 
differentiable programming 
for probabilistic graphical 
models? 

Judea Pearl, UCLA
Turing Award 2012
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X1 X2 P(X)

1 1 0.4

1 0 0.2

0 1 0.1

0 0 0.3

P(X) = 0.4 × I[X1=1] × I[X2=1]
+ 0.2 × I[X1=1] × I[X2=0]
+ 0.1 × I[X1=0] × I[X2=1]
+ 0.3 × I[X1=0] × I[X2=0]

Alternative Representation: 
Graphical Models as (Deep) Networks
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X1 X2 P(X)

1 1 0.4

1 0 0.2
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Shorthand using Indicators

X1 X2 P(X)

1 1 0.4

1 0 0.2

0 1 0.1

0 0 0.3

P(X) = 0.4 × X1 × X2

+ 0.2 × X1 × X2

+ 0.1 × X1 × X2

+ 0.3 × X1 × X2

¾

¾

¾ ¾
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Summing Out Variables

X1 X2 P(X)

1 1 0.4

1 0 0.2

0 1 0.1

0 0 0.3

P(e) = 0.4 × X1 × X2

+ 0.2 × X1 × X2

+ 0.1 × X1 × X2

+ 0.3 × X1 × X2

¾

¾

¾ ¾

Let us say, we want to compute P(X1 = 1)

Set X1 = 1, X1 = 0, X2 = 1, X2 = 1
¾ ¾

Easy: Set both indicators of X2 to 1
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This can be represented as a 
computational graph

Ä

Å
0.4

Ä Ä Ä
0.2 0.1

0.3

¾
X1 X2X1

¾
X2

X1 X2 P(X)

1 1 0.4

1 0 0.2

0 1 0.1

0 0 0.3

network polynomial 
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However, the network polynomial of a 
distribution might be exponentially large

¾

Å

¾X2 X2
¾X3 X3

¾X1 X1 X4

Ä Ä ÄÄ ÄÄ ÄÄ Ä Ä ÄÄ ÄÄ ÄÄ

X4
¾X5 X5

2N-1

N×2N-1

Example: Parity
Uniform distribution over states with even number of 1’s
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Make the computational graphs deep

14

Reuse partial computation

Induce many 
hidden layers 

Example: Parity
Uniform distribution over states with even number of 1’s



Kristian Kersting  - Sum-Product Networks: The Third Wave of Differentiable Programming

Adnan 

Darwiche

UCLA

Pedro 

Domingos

UW

Å

Ä

Å
0.7 0.3

¾
X1 X2

Å ÅÅ

Ä

0.80.30.1
0.20.70.90.4

0.6

X1
¾
X2

Sum-Product Networks* 
a deep probabilistic learning

framework [Poon, Domingos UAI 2011]

A SPN S is a rooted DAG 

where nodes are sum, 

product, input indicator 

and weights are on edges 

from the sums of children

*SPNs are an instance of Arithmetic Circuits (ACs). ACs have 

been introduced into the AI literature more than15 years ago as a 

tractable representation of probability distributions 
[Darwiche CACM 48(4):608-647 2001] c
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Valid SPN: General Conditions

Theorem: SPN is valid if it is complete & consistent

16

Incomplete Inconsistent

Complete: Under sum, children 

cover the same set of variables

Consistent: Under product, no variable 

in one child and negation in another

S(e) £ SX~e S(X) S(e) ³ SX~e S(X)

SPN is valid if S(e) = SX~e S(X) for all e. If so, we can compute 

(conditional) marginals efficiently since the partition function Z 

can be computed by setting all indicators to 1



Kristian Kersting  - Sum-Product Networks: The Third Wave of Differentiable Programming

Inference: Linear in Size of Network

As long as weights sum to 1 
at each sum node

P(X) = S(X)

Å

Ä

Å
0.7 0.3

¾
X1 X2

Å ÅÅ

Ä

0.80.30.1
0.20.70.90.4

0.6

¾X1 X2
1 0 0 1

0.6 0.9 0.7 0.8

0.42 0.72

X: X1 = 1, X2 = 0

X1 1

X1 0

X2 0

X2 1

¾

¾

0.51

How to set the 
indicator variables
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Marginal:  P(e) = S(e) 

Å

Ä

Å
0.7 0.3

¾
X1 X2

Å ÅÅ

Ä

0.80.30.1
0.20.70.90.4

0.6

¾X1 X2
1 0 1 1

0.6 0.9 1 1

0.6 0.9

0.69 = 0.51 + 0.18
e: X1 = 1

X1 1

X1 0

X2 1

X2 1

¾

¾

Inference: Linear in Size of Network

How to set the 
indicator variables
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0.7 0.3

¾
X1 X2

0.80.30.1
0.20.70.90.4

0.6

¾X1 X2
1 0 1 1

0.6 0.9 0.7 0.8

0.42 0.72

0.3 ´ 0.72 = 0.216e: X1 = 1

X1 1

X1 0

X2 1

X2 1

¾

¾

MAP: Replace sums with maxs

MAX MAX MAX MAX

MAX

Ä Ä

0.7 ´ 0.42 = 0.294

Inference: Linear in Size of Network

How to set the 
indicator variables

de
co

de
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Building challenging multivariate distributions from well-
known univariate distributions with flexible correlations,      
here multivariate Poisson distribution

positive negative no

anti
Unimodel mixtures
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And also learning is simple. E.g. we can learn (the 
structure) via parameter estimation assuming a 
fixed network (like in Deep Neural Learning)

• Start with a dense SPN

• Find the structure by (online) learning weights
Zero weights signify absence of connections

• (Hard) EM beneficial to avoid gradient vanishing
Each sum node is a mixture over children

In principle you can turn a given SPN into, say, a 
TensorFlow computation graph and apply any known 
algorithm from there
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[Poon, Domingos UAI’11; Molina, Natarajan, Kersting AAAI´17]

Word
D

oc
um

en
ts

Word Counts

Or we learn directly (Tree-)SPNs
Testing independence using a 
(non-parametric) independency test
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[Poon, Domingos UAI’11; Molina, Natarajan, Kersting AAAI´17]

Word
D

oc
um

en
ts

Word Counts

E.g. for Poisson RVs: 
Learn Poisson model
trees for P(x|V-x) and
P(y|V-y). Check 
whether X  resp. Y is
significant in P(y|V-x) 
resp. P(x|V-y)

[Zeileis, Hothorn, Hornik Journal of Computational
And Graphical Statistics 17(2):492–514 2008] 

Or we learn directly (Tree-)SPNs

In general use the
independency test for 
your random variables 
at hand such as g-test 
for Gaussians

Testing independence using a 
(non-parametric) independency test
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Word
D

oc
um

en
ts

Word Counts

*

Mixture of 
Poisson 
Dependency 
Networks or
random splits

[Poon, Domingos UAI’11; Molina, Natarajan, Kersting AAAI‘17]

Or we learn directly (Tree-)SPNs

In general some
clustering for your
random variables at
hand such as kMeans
for Gaussians

Testing independence using a 
(non-parametric) independency test
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Word
D

oc
um

en
ts

Clustering or
random splits

Word Counts

*

+ +

keep growing 
alternatingly * 
and + layers

[Poon, Domingos UAI’11; Molina, Natarajan, Kersting AAAI`17]

Or we learn directly (Tree-)SPNs
Testing independence using a 
(non-parametric) independency test
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SPFlow: An Easy and Extensible Library 
for Sum-Product Networks [Molina, Vergari, Stelzner, Peharz, 

Subramani, Poupart, Di Mauro, 
Kersting 2019]

Domain Specific Language, 
Inference, EM, and Model 
Selection as well as 
Compilation of SPNs into TF 
and PyTorch and also into flat, 
library-free code even suitable 
for running on devices: 
C/C++,GPU, FPGA

https://github.com/SPFlow/SPFlow

[Poon, Domingos UAI’11; Molina, Natarajan, Kersting AAAI’17; Vergari, Peharz, Di Mauro, Molina, Kersting, Esposito AAAI ’18; 
Molina, Vergari, Di Mauro, Esposito, Natarajan, Kersting AAAI ‘18]
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Random sum-product networks
[Peharz, Vergari, Molina, Stelzner, Trapp, Kersting, Ghahramani UDL@UAI 2018]

prototypes
outliers

prototypes
outliers

input log likelihood

fre
qu

en
cy

SPNs can distinguish the
datasets

Build a random SPN 
structure. This can be 
done in an informed 
way or completely at 
random

SPNs can have
similar predictive
performances as

(simple) DNNs
SPNs know when they do 

not know by design
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SPNs closely related to well known, advanced ML models, 
e.g. Poisson SPNs = Hierarchical Topic Models

Mutual Information 
(NIPS corpus)

Poisson Multinomial SPN
= hierachical topic model
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[Molina, Natarajan, Vergari, Di Mauro, Esposito, Kersting AAAI 2018]

Use nonparametric 
independency tests 

and piece-wise linear 
approximations of the 

univariate distributions in 
the leaves

SPNs feature distribution-agnostic 
deep probabilistic learning
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Putting a little bit of structure into SPN models
allows one to realize autoregressive deep models
akin to PixelCNNs [van den Oord et al. NIPS 2016]

Conditional SPNs
[Shao, Molina, Vergari, Peharz, Kersting 2019]

Learn Conditional SPN (CSPNs) by non-parametric 
conditional independence testing and conditional 
clustering [Zhang et al. UAI 2011; Lee, Honovar UAI 2017; He et 

al. ICDM 2017; Zhang et al. AAAI 2018; Runge AISTATS 2018] 

encoded using gating functions 

CSPNs

PixelCNNs

gating functions

1 2

3 4

CSPN P(k|k-1)

chain rule of

probabilities
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Gating functions 
encoded as deep 
network

SPN

DBN

kNN

DBM

PCA

Original

[Poon, Domingos UAI’11]

Conditional SPNs

gating functionsLearn Conditional SPN (CSPNs) by non-parametric 
conditional independence testing and conditional 
clustering [Zhang et al. UAI 2011; Lee, Honovar UAI 2017; He et 
al. ICDM 2017; Zhang et al. AAAI 2018; Runge AISTATS 2018] 
encoded using gating functions 

[Shao, Molina, Vergari, Peharz, Kersting 2019]
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What have we learnt about SPNs?

Sum-product networks (SPNs)
• DAG of sums and products
• They are instances of Arithmetic Circuits (ACs)
• Compactly represent partition function
• Learn many layers of hidden variables

Efficient marginal inference
Easy learning
Can outperform well-known alternatives e.g. 
faster Attend-Infer-Repeat models [Stelzner, Peharz, Kersting ICML 2019]
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