Sum-Product Networks* o
The Third Wave of Differentiable Programming
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*Thanks for Pedro Domingos for making his slides publically available
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Al has impact

Data are now ubiquitous; there is great value from under-
standing this data, building models and making predictions

However, data is not everything
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The third wave of Al

Data are now ubiquitous; there is great value from under-
standing this data, building models and making predictions

However, data is not everything

Al systems that can acquire
human-like communication and
reasoning capabilities, with the
ability to recognise new
situations and adapt to them.

Kristian Kersting - Sum-Product Networks: The Third Wave of Differentiable Programming




NATUICINSIGHT

Neuron

Differentiable Programming

C

[ A K N N N N N N
PR FR% D 318
3 * £ &€ kR 3 B 3

(o]

.....

Potentially much more powerful than shallow
architectures, represent computations
[LeCun, Bengio, Hinton Nature 521, 436—444, 2015]

Neural Networks ..

-----



DNNs often have no probabilistic

semantics._ They are not P(YlX) ¥ P(Y,X)

calibrated joint distributions.
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Train & Evaluate Transfer Testing
[Bradshaw et al. arXiv:1707.02476 2017]
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Input log ,likelihood® (sum over outputs)
[Peharz, Vergari, Molina, Stelzner, Trapp, Kersting, Ghahramani UDL@UAI 2018]



The third wave of
differentiable programming

Getting deep systems that
know when they do not know
and, hence, recognise new
situations and adapt to them
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Can we borrow ideas from
differentiable programming
for probabilistic graphical
models?

Judea Pearl, UCLA
Turing Award 2012



Alternative Representation:
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Graphical Models as (Deep) Networks

X; | Xz | P(X)
1| 1] 04
1| o] 02
0| 1] 01
0| 0] 03

P(X)=0.4 - 1[X;=1]
I[X,=1
A[X,=0
A[X,=0

+0.2 -
+ 0.1
+0.3

[X=1]
[X=0
A[X=1"
[X=0
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Alternative Representation:
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Graphical Models as (Deep) Networks

X; | Xz | P(X)
1| 1| 04
1| o] 02
0| 1] 01
0| 0] 03

P(X) = 0.4 - 1[X,=1] - [[X,=1]
I[X=1
[X=0
[X=0

+ 0.2 -
+ 0.1
+0.3

[X,=0
A[X=1
[X,=0
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Shorthand using Indicators

X; | Xz | P(X)
1| 1] 04
1| o] 02
0| 1] 01
0| 0] 03

PX)=04 X, - X,
+02-X; - X,
+0.1-X,- X,
+03-X, - X,
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Summing Out Variables

Let us say, we want to compute P(X;=1)

XI XZ P(X) P(e) — 0.4 . Xl . XZ
1| 1] 04 102X, .)—(2
1| o | 02 _
0| 1| o1 +0.1 ')_(1 {2
0|0 03 +0.3-X - X,

Set X,=1,X,=0/X,=1,X,=1

~

{ Easy: Set both indicators of X2 to 1

J
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This can be represented as a £ Wi
computational graph

X; | Xz | P(X)
1| 1| 04
1|0 | 02
0| 1| 01
0| 0] 03

network polynomial
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However, the network polynomial of a
distribution might be exponentially large

Example: Parity
Uniform distribution over states with even number of 1’s
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Make the computational graphs deep

Example: Parity
Uniform distribution over states with even number of 1’s

Induce many
hidden layers

Reuse partial computation
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Sum-Product Networks* w ?g :
a deep probabillistic learning N "

framework [Poon, Domingos UAI 2011]

Adnan
Darwiche
’ UCLA

A SPN S is a rooted DAG
where nodes are sum,
product, input indicator
and weights are on edges
from the sums of children

X, X, X, X,

*SPNs are an instance of Arithmetic Circuits (ACs). ACs have
been introduced into the Al literature more than15 years ago as a

tractable representation of probability distributions
[Darwiche CACM 48(4):608-647 2001] ¢



Valid SPN: General Conditions

SPN is valid if S(e) = Zx_. S(X) for all e. If so, we can compute
(conditional) marginals efficiently since the partition function Z
can be computed by setting all indicators to 1

Theorem: SPN is valid if it is complete & consistent

Complete: Under sum, children Consistent: Under product, no variable
cover the same set of variables in one child and negation in another

Incomplete Inconsistent

X, X,

S(€) < Zx.e S(X) S(€) = Zx.e S(X)

o)
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Inference: Linear in Size of Network

o7
%

As long as weights sum to 1
at each sum node

P(X) = 5(X)

X:X;=1,X,=0
X 1 0.42
X, 0
X, 0 0.6
Y2 1 0.6

How to set the
indicator variables
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Inference: Linear in Size of Network

Marginal: P(e) = S(e) ‘

0.69=0.51+0.18

e: X;=1
X, 1
X, 0
X, 1
X, ]
HOYV to set the X, X, X, X,
iIndicator variables 1 ) | |
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Inference: Linear in Size of Network
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MAP: Replace sums with maxs

e: X, =1 0.7 x 0.42 = 0.294 MAX 0.3x0.72=0216

X, 1 0.42 0.72

X, 0

X, 1 0.6 7y 09 = =07 0.8

— 4 09 0.7 02

X5 1 0.6 ><I 01 03 \>< 0.8
How to set the X, X X, Y
indicator variables ! ?

1 0 1 1
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Building challenging multivariate distributions from well-

known univariate distributions with flexible correlations,
here multivariate Poisson distribution

positive l ' negative l |

(a) """ (b) |~' (©) g

Unimodel mixtures
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And also learning is simple. E.g. we can learn (the
structure) via parameter estimation assuming a
fixed network (like in Deep Neural Learning)

o Start with a dense SPN

* Find the structure by (online) learning weights
Zero weights signify absence of connections

* (Hard) EM beneficial to avoid gradient vanishing
Each sum node is a mixture over children

In principle you can turn a given SPN into, say, a
TensorFlow computation graph and apply any known
algorithm from there
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[Poon, Domingos UAI'11; Molina, Natarajan, Kersting AAAI'17]
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Or we learn directly (Tree-)SPNs @ i

Testing independence using a
(non-parametric) independency test

Word

Word Counts

D,

Documents
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[Poon, Domingos UAI'11; Molina, Natarajan, Kersting AAAI'17]
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Or we learn directly (Tree-)SPNs

Testing independence using a
(non-parametric) independency test

[Zeileis, Hothorn, Hornik Journal of Computational

And Graphical Statistics 17(2):492-514 2008] rd In general use the

independency test for

E.g. for Poisson RVs: your random variables
at hand such as g-test

for Gaussians

Learn Poisson model
trees for P(x|V-x) and
P(y|V-y). Check

whether X resp. Y is

significant in P(y|V-x)
resp. P(x|V-y)

Word Counts

D,
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[Poon, Domingos UAI'11; Molina, Natarajan, Kersting AAAI‘17]
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Or we learn directly (Tree-)SPNs

Testing independence using a
(non-parametric) independency test

In general some
clustering for your rd
random variables at
hand such as kMeans
for Gaussians

i

Mixture of O

Poisson g

Dependency 8 Word Counts
A

Networks or
random splits

=D,
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[Poon, Domingos UAI'11; Molina, Natarajan, Kersting AAAI'17]
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Or we learn directly (Tree-)SPNs

99 DARMSTADT

Testing independence using a
(non-parametric) independency test

Clustering or
random splits

keep growing
alternatingly
and + |layers

Documertts
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[Poon, Domingos UAI'11; Molina, Natarajan, Kersting AAAI'17; Vergari, Peharz, Di Mauro, Molina, Kersting, Esposito AAAI '18;
Molina, Vergari, Di Mauro, Esposito, Natarajan, Kersting AAAI 18]
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rom spn.structure.leaves.parametric.Parametric import Categorical - 'f' L
- Domain Specific Language,
rom spn,.structure.Base import Sum, Product
rom spn.structure.base import assign_ids, rebuild_scopes_bottom_up Inference, EM, and MOdeI
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SPFow, an open-source Python fbrary providing a simple interface to nference, learning and manipulation routines for
deep and tractable probabilistic models caled Sum-Product Networks (SPNs). The fbrary aliows one to quickly create SPNs
both from data and through a doman specfic language (DSL). it efficiently implemaents several probabilstic inderence

sn.tman llia casvna. titon sanssn'.snles sscndpsnale sed lavasscioatro snast sesanbhabla svalasnat s NINT A dlace wish sascealw



%54 TECHNISCHE
U7/~ UNIVERSITAT
7 DARMSTADT

Random sum-product networks

[Peharz, Vergari, Molina, Stelzner, Trapp, Kersting, Ghahramani UDL@UAI 2018]
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SPNs can have

similar predictive
SPNs know when they do

performances as SPNs can distinguish the

(simple) DNNs not know by design

datasets




SPNs closely related to well known, advanced ML models,
e.g. Poisson SPNs = Hierarchical Topic Models

classifier 5\
ey ) A=5.2
neural 0.54 0.92 @ 0.08
erFer___ \\\ network 0.46
trai :
learping motion 0.50
conteol /N, droctonosa| ] 025
N, tation 0.16 '
/~al b learming 0.22
error 0.13
m % ‘ ike signal 0.3 we.ight 0.09
on_ \ component 0.3 | | train 0.07
P ey potential noise 0.23 concept 0.01
function channel 0.17 -
task System :
Mutual Information Poisson Multinomial SPN
(NIPS corpus) = hierachical topic model
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[Molina, Natarajan, Vergari, Di Mauro, Esposito, Kersting AAAI 2018]

SPNs feature distribution-agnostic
deep probabilistic learning

Use nonparametric

No of unfinished Educations inde pen den Ccy tests
e and piece-wise linear
satisfaction Work approximations of the
uccess 8IS i e . univariate distributions in
the leaves
1Q
Satisfaction-Treatment | | "
s atisfactionMedication .| 0.004 — PWL, A= 0.1 |

PWL, A=l.0 “‘
- PWL, A:SO
GaUSSian |
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Putting a little bit of structure into SPN models
allows one to realize autoregressive deep models

akin to PixelCNNs [van den Oord et al. NIPS 2016]

Learn Conditional SPN (CSPNs) by non-parametrlc
conditional independence testing and conditional

clustering [Zhang et al. UAI 2011; Lee, Honovar UAI 2017; He et
al. ICDM 2017; Zhang et al. AAAI 2018; Runge AISTATS 2018]

encoded using gating functions

Conditional SPNs

[Shao, Molina, Vergari, Peharz, Kersting 2019]

2o DEG

chain rule of
probabilities

CSPN P(k|k 1)

gating functions

gl(x




T

Gating funtions
encoded as deep

network Doy Feed Farwand (0FF)

Learn Conditional SPN (CSPNs) by non-parametric  9ating functions
conditional independence testing and conditional

clustering [Zhang et al. UAI 2011; Lee, Honovar UAI 2017; He et
al. ICDM 2017; Zhang et al. AAAI 2018; Runge AISTATS 2018]

encoded using gating functions

Conditional SPNs

[Shao, Molina, Vergari, Peharz, Kersting 2019]

CAML DFG




7 TECHNISCHE

What have we learnt about SPNs?( " 5=
Sum-product networks (SPNs)
* DAG of sums and products
* They are instances of Arithmetic Circuits (ACs)
» Compactly represent partition function
* Learn many layers of hidden variables

Efficient marginal inference
Easy learning

Can outperform well-known alternatives e.g.
faster Attend-Infer-Repeat models s::. rerar, kersing o 2019
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