
Sum-Product Networks*
The Third Wave of Differentiable Programming

Kristian
Kersting

Alejandro Molina, Antonio Vergari, Karl Stelzner, Robert
Peharz, Pranav Subramani, Nicola Di Mauro, Pascal Poupart,
Kristian Kersting: SPFlow: An Easy and Extensible Library
for Deep Probabilistic Learning using Sum-Product
Networks. CoRR abs/1901.03704 (2019)

github.com/SPFlow

*Thanks for Pedro Domingos for making his slides publically available

Kristian Kersting - Sum-Product Networks: The Third Wave of Differentiable Programming

Data are now ubiquitous; there is great value from under-
standing this data, building models and making predictions

However, data is not everything

AI has impact

Handcrafted

1980

Learning

2010

Kristian Kersting - Sum-Product Networks: The Third Wave of Differentiable Programming

Data are now ubiquitous; there is great value from under-
standing this data, building models and making predictions

However, data is not everything

AI systems that can acquire
human-like communication and
reasoning capabilities, with the
ability to recognise new
situations and adapt to them.

The third wave of AI

Human-like

Handcrafted

1980

Learning

2010

soon

Kristian Kersting - Sum-Product Networks: The Third Wave of Differentiable Programming

Deep Neural Networks
Potentially much more powerful than shallow
architectures, represent computations
[LeCun, Bengio, Hinton Nature 521, 436–444, 2015]

Neuron

Differentiable Programming

Kristian Kersting - Sum-Product Networks: The Third Wave of Differentiable Programming

SVHN SEMEIONMNIST

Train & Evaluate Transfer Testing
[Bradshaw et al. arXiv:1707.02476 2017]

DNNs often have no probabilistic
semantics. They are not
calibrated joint distributions.

[Peharz, Vergari, Molina, Stelzner, Trapp, Kersting, Ghahramani UDL@UAI 2018]
Input log „likelihood“ (sum over outputs)

fre
qu

en
cy

P(Y|X) ≠ P(Y,X)

Many DNNs cannot
distinguish the

datasets

Kristian Kersting - Sum-Product Networks: The Third Wave of Differentiable Programming

Getting deep systems that
know when they do not know

and, hence, recognise new
situations and adapt to them

The third wave of
differentiable programming

Probabilities

Shallow

1970

Deep

2010

now

Kristian Kersting - Sum-Product Networks: The Third Wave of Differentiable Programming

Can we borrow ideas from
differentiable programming
for probabilistic graphical
models?

Judea Pearl, UCLA
Turing Award 2012

Kristian Kersting - Sum-Product Networks: The Third Wave of Differentiable Programming

X1 X2 P(X)

1 1 0.4

1 0 0.2

0 1 0.1

0 0 0.3

P(X) = 0.4 × I[X1=1] × I[X2=1]
+ 0.2 × I[X1=1] × I[X2=0]
+ 0.1 × I[X1=0] × I[X2=1]
+ 0.3 × I[X1=0] × I[X2=0]

Alternative Representation:
Graphical Models as (Deep) Networks

Kristian Kersting - Sum-Product Networks: The Third Wave of Differentiable Programming

X1 X2 P(X)

1 1 0.4

1 0 0.2

0 1 0.1

0 0 0.3

P(X) = 0.4 × I[X1=1] × I[X2=1]
+ 0.2 × I[X1=1] × I[X2=0]
+ 0.1 × I[X1=0] × I[X2=1]
+ 0.3 × I[X1=0] × I[X2=0]

Alternative Representation:
Graphical Models as (Deep) Networks

Kristian Kersting - Sum-Product Networks: The Third Wave of Differentiable Programming

Shorthand using Indicators

X1 X2 P(X)

1 1 0.4

1 0 0.2

0 1 0.1

0 0 0.3

P(X) = 0.4 × X1 × X2

+ 0.2 × X1 × X2

+ 0.1 × X1 × X2

+ 0.3 × X1 × X2

¾

¾

¾ ¾

Kristian Kersting - Sum-Product Networks: The Third Wave of Differentiable Programming

Summing Out Variables

X1 X2 P(X)

1 1 0.4

1 0 0.2

0 1 0.1

0 0 0.3

P(e) = 0.4 × X1 × X2

+ 0.2 × X1 × X2

+ 0.1 × X1 × X2

+ 0.3 × X1 × X2

¾

¾

¾ ¾

Let us say, we want to compute P(X1 = 1)

Set X1 = 1, X1 = 0, X2 = 1, X2 = 1
¾ ¾

Easy: Set both indicators of X2 to 1

Kristian Kersting - Sum-Product Networks: The Third Wave of Differentiable Programming

This can be represented as a
computational graph

Ä

Å
0.4

Ä Ä Ä
0.2 0.1

0.3

¾
X1 X2X1

¾
X2

X1 X2 P(X)

1 1 0.4

1 0 0.2

0 1 0.1

0 0 0.3

network polynomial

Kristian Kersting - Sum-Product Networks: The Third Wave of Differentiable Programming

However, the network polynomial of a
distribution might be exponentially large

¾

Å

¾X2 X2
¾X3 X3

¾X1 X1 X4

Ä Ä ÄÄ ÄÄ ÄÄ Ä Ä ÄÄ ÄÄ ÄÄ

X4
¾X5 X5

2N-1

N×2N-1

Example: Parity
Uniform distribution over states with even number of 1’s

Kristian Kersting - Sum-Product Networks: The Third Wave of Differentiable Programming

Make the computational graphs deep

14

Reuse partial computation

Induce many
hidden layers

Example: Parity
Uniform distribution over states with even number of 1’s

Kristian Kersting - Sum-Product Networks: The Third Wave of Differentiable Programming

Adnan

Darwiche

UCLA

Pedro

Domingos

UW

Å

Ä

Å
0.7 0.3

¾
X1 X2

Å ÅÅ

Ä

0.80.30.1
0.20.70.90.4

0.6

X1
¾
X2

Sum-Product Networks*
a deep probabilistic learning

framework [Poon, Domingos UAI 2011]

A SPN S is a rooted DAG

where nodes are sum,

product, input indicator

and weights are on edges

from the sums of children

*SPNs are an instance of Arithmetic Circuits (ACs). ACs have

been introduced into the AI literature more than15 years ago as a

tractable representation of probability distributions
[Darwiche CACM 48(4):608-647 2001] c

Kristian Kersting - Sum-Product Networks: The Third Wave of Differentiable Programming

Valid SPN: General Conditions

Theorem: SPN is valid if it is complete & consistent

16

Incomplete Inconsistent

Complete: Under sum, children

cover the same set of variables

Consistent: Under product, no variable

in one child and negation in another

S(e) £ SX~e S(X) S(e) ³ SX~e S(X)

SPN is valid if S(e) = SX~e S(X) for all e. If so, we can compute

(conditional) marginals efficiently since the partition function Z

can be computed by setting all indicators to 1

Kristian Kersting - Sum-Product Networks: The Third Wave of Differentiable Programming

Inference: Linear in Size of Network

As long as weights sum to 1
at each sum node

P(X) = S(X)

Å

Ä

Å
0.7 0.3

¾
X1 X2

Å ÅÅ

Ä

0.80.30.1
0.20.70.90.4

0.6

¾X1 X2
1 0 0 1

0.6 0.9 0.7 0.8

0.42 0.72

X: X1 = 1, X2 = 0

X1 1

X1 0

X2 0

X2 1

¾

¾

0.51

How to set the
indicator variables

Kristian Kersting - Sum-Product Networks: The Third Wave of Differentiable Programming

Marginal: P(e) = S(e)

Å

Ä

Å
0.7 0.3

¾
X1 X2

Å ÅÅ

Ä

0.80.30.1
0.20.70.90.4

0.6

¾X1 X2
1 0 1 1

0.6 0.9 1 1

0.6 0.9

0.69 = 0.51 + 0.18
e: X1 = 1

X1 1

X1 0

X2 1

X2 1

¾

¾

Inference: Linear in Size of Network

How to set the
indicator variables

Kristian Kersting - Sum-Product Networks: The Third Wave of Differentiable Programming

0.7 0.3

¾
X1 X2

0.80.30.1
0.20.70.90.4

0.6

¾X1 X2
1 0 1 1

0.6 0.9 0.7 0.8

0.42 0.72

0.3 ´ 0.72 = 0.216e: X1 = 1

X1 1

X1 0

X2 1

X2 1

¾

¾

MAP: Replace sums with maxs

MAX MAX MAX MAX

MAX

Ä Ä

0.7 ´ 0.42 = 0.294

Inference: Linear in Size of Network

How to set the
indicator variables

de
co

de

Kristian Kersting - Sum-Product Networks: The Third Wave of Differentiable Programming

Building challenging multivariate distributions from well-
known univariate distributions with flexible correlations,
here multivariate Poisson distribution

positive negative no

anti
Unimodel mixtures

Kristian Kersting - Sum-Product Networks: The Third Wave of Differentiable Programming

And also learning is simple. E.g. we can learn (the
structure) via parameter estimation assuming a
fixed network (like in Deep Neural Learning)

• Start with a dense SPN

• Find the structure by (online) learning weights
Zero weights signify absence of connections

• (Hard) EM beneficial to avoid gradient vanishing
Each sum node is a mixture over children

In principle you can turn a given SPN into, say, a
TensorFlow computation graph and apply any known
algorithm from there

Kristian Kersting - Sum-Product Networks: The Third Wave of Differentiable Programming

[Poon, Domingos UAI’11; Molina, Natarajan, Kersting AAAI´17]

Word
D

oc
um

en
ts

Word Counts

Or we learn directly (Tree-)SPNs
Testing independence using a
(non-parametric) independency test

Kristian Kersting - Sum-Product Networks: The Third Wave of Differentiable Programming

[Poon, Domingos UAI’11; Molina, Natarajan, Kersting AAAI´17]

Word
D

oc
um

en
ts

Word Counts

E.g. for Poisson RVs:
Learn Poisson model
trees for P(x|V-x) and
P(y|V-y). Check
whether X resp. Y is
significant in P(y|V-x)
resp. P(x|V-y)

[Zeileis, Hothorn, Hornik Journal of Computational
And Graphical Statistics 17(2):492–514 2008]

Or we learn directly (Tree-)SPNs

In general use the
independency test for
your random variables
at hand such as g-test
for Gaussians

Testing independence using a
(non-parametric) independency test

Kristian Kersting - Sum-Product Networks: The Third Wave of Differentiable Programming

Word
D

oc
um

en
ts

Word Counts

*

Mixture of
Poisson
Dependency
Networks or
random splits

[Poon, Domingos UAI’11; Molina, Natarajan, Kersting AAAI‘17]

Or we learn directly (Tree-)SPNs

In general some
clustering for your
random variables at
hand such as kMeans
for Gaussians

Testing independence using a
(non-parametric) independency test

Kristian Kersting - Sum-Product Networks: The Third Wave of Differentiable Programming

Word
D

oc
um

en
ts

Clustering or
random splits

Word Counts

*

+ +

keep growing
alternatingly *
and + layers

[Poon, Domingos UAI’11; Molina, Natarajan, Kersting AAAI`17]

Or we learn directly (Tree-)SPNs
Testing independence using a
(non-parametric) independency test

Kristian Kersting - Sum-Product Networks: The Third Wave of Differentiable Programming

SPFlow: An Easy and Extensible Library
for Sum-Product Networks [Molina, Vergari, Stelzner, Peharz,

Subramani, Poupart, Di Mauro,
Kersting 2019]

Domain Specific Language,
Inference, EM, and Model
Selection as well as
Compilation of SPNs into TF
and PyTorch and also into flat,
library-free code even suitable
for running on devices:
C/C++,GPU, FPGA

https://github.com/SPFlow/SPFlow

[Poon, Domingos UAI’11; Molina, Natarajan, Kersting AAAI’17; Vergari, Peharz, Di Mauro, Molina, Kersting, Esposito AAAI ’18;
Molina, Vergari, Di Mauro, Esposito, Natarajan, Kersting AAAI ‘18]

Kristian Kersting - Sum-Product Networks: The Third Wave of Differentiable Programming

Random sum-product networks
[Peharz, Vergari, Molina, Stelzner, Trapp, Kersting, Ghahramani UDL@UAI 2018]

prototypes
outliers

prototypes
outliers

input log likelihood

fre
qu

en
cy

SPNs can distinguish the
datasets

Build a random SPN
structure. This can be
done in an informed
way or completely at
random

SPNs can have
similar predictive
performances as

(simple) DNNs
SPNs know when they do

not know by design

Kristian Kersting - Sum-Product Networks: The Third Wave of Differentiable Programming

SPNs closely related to well known, advanced ML models,
e.g. Poisson SPNs = Hierarchical Topic Models

Mutual Information
(NIPS corpus)

Poisson Multinomial SPN
= hierachical topic model

Kristian Kersting - Sum-Product Networks: The Third Wave of Differentiable Programming

[Molina, Natarajan, Vergari, Di Mauro, Esposito, Kersting AAAI 2018]

Use nonparametric
independency tests

and piece-wise linear
approximations of the

univariate distributions in
the leaves

SPNs feature distribution-agnostic
deep probabilistic learning

Kristian Kersting - Sum-Product Networks: The Third Wave of Differentiable Programming

Putting a little bit of structure into SPN models
allows one to realize autoregressive deep models
akin to PixelCNNs [van den Oord et al. NIPS 2016]

Conditional SPNs
[Shao, Molina, Vergari, Peharz, Kersting 2019]

Learn Conditional SPN (CSPNs) by non-parametric
conditional independence testing and conditional
clustering [Zhang et al. UAI 2011; Lee, Honovar UAI 2017; He et

al. ICDM 2017; Zhang et al. AAAI 2018; Runge AISTATS 2018]

encoded using gating functions

CSPNs

PixelCNNs

gating functions

1 2

3 4

CSPN P(k|k-1)

chain rule of

probabilities

Kristian Kersting - Sum-Product Networks: The Third Wave of Differentiable Programming

Gating functions
encoded as deep
network

SPN

DBN

kNN

DBM

PCA

Original

[Poon, Domingos UAI’11]

Conditional SPNs

gating functionsLearn Conditional SPN (CSPNs) by non-parametric
conditional independence testing and conditional
clustering [Zhang et al. UAI 2011; Lee, Honovar UAI 2017; He et
al. ICDM 2017; Zhang et al. AAAI 2018; Runge AISTATS 2018]
encoded using gating functions

[Shao, Molina, Vergari, Peharz, Kersting 2019]

Kristian Kersting - Sum-Product Networks: The Third Wave of Differentiable Programming

What have we learnt about SPNs?

Sum-product networks (SPNs)
• DAG of sums and products
• They are instances of Arithmetic Circuits (ACs)
• Compactly represent partition function
• Learn many layers of hidden variables

Efficient marginal inference
Easy learning
Can outperform well-known alternatives e.g.
faster Attend-Infer-Repeat models [Stelzner, Peharz, Kersting ICML 2019]

Kristian Kersting - Sum-Product Networks: The Third Wave of Differentiable Programming

