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Al and ML have a strong impact
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ALL SYSTEMS GO

Data are now ubiquitous; there is great value from under-
standing this data, building models and making predictions

However, there are not enough data scientists, statisticians,
machine learning and Al experts

Provide the foundations, algorithms, and tools to

develop systems that ease or even automate Al
model discovery from data as much as possible
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Potentially much more powerful than shallow
architectures, represent computations
[LeCun, Bengio, Hinton Nature 521, 436—444, 2015]

Neural Networks ..
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Deep NerINetwk

NATUICINSIGHT

Potentially much more powerful than shallow
architectures, represent computations
[LeCun, Bengio, Hinton Nature 521, 436—444, 2015]

They “develop intuition” about complicated
biological processes and generate scientific data

[Schramowski, Brugger, Mahlein, Kersting 2019] ﬂ;lsunde.s aaaaa i
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Potentlally much more powerful than shallow
architectures, represent computations

[LeCun, Bengio, Hinton Nature 521, 436—444, 2015]

| SHARE  REPORTS PsycHOL

-:'i O Semantlcs derlved automatically from language
| corpora contain human-like biases

o Aylin Caliskan'", Joanna J. Bryson «", Arvind Narayanan'-

@

+ See all autho d affiliati

They “capture” stereotypes from human language



NATUTCINSIGHT

Deep Neural Networks

Potentially much more powerful than shallow
architectures, represent computations

[LeCun, Bengio, Hinton Nature 521, 436—444, 2015]

The Moral Choice Machine

WEAT Bias WEAT Bias
0.116 0.348 -0.099 -1.118
0.090 0.281 -0.101 -0.763
0.094 0.277 -0.110 -0.730
0.114 0.264 -0.105 -0.664
0.093 0.260 -0.108 -0.600
0.108 0.238 -0.109 -0.569

But lucky they also “capture”
our moral choices

[Jentzsch, Schramowski, Rothkopf, Kersting AIES 2019]

Yes, it is. No, it is not.
: * B ) [ i * oSS
| Sentence Embedding | | Sentence Embedding

Moral Bias =

'

Cosine Similarity

'

2%

S

\/

Sentence Embedding

s

Is it ok to murder?

AAAIl /| ACM conference on
ARTIFICIAL INTELLIGENCE,
ETHICS, AND SOCIETY

Cosine Similariy



05:10 Min.
Der Hamster gehart nicht in den Toaster - Wie Forscher von der TU
Darmstadt versuchen, Maschinen ... [Videoseite]

hauptsache kultur | 14.03.19, 22:45 Uhr

The Moral Choice Machine

Dos  WEAT Bias Don’ts  WEAT Bias S
smile 0.116 0.348 rot -0.099 -1.118

sightsee  0.090 0.281 negative -0.101 -0.763

cheer 0.094 0.277 harm -0.110 -0.730 :

celebrate 0.114 0.264 damage -0.105 -0.664 Moral Bias = . Cosine Similarity . Cosine Similariy
picnic 0.093 0.260 slander -0.108 -0.600 ;

snuggle  0.108 0.238 slur -0.109 -0.569

But lucky they also “capture”

AAAI /| ACM conference on

our moral choices | -
[Jentzsch, Schramowski, Rothkopf, Kersting AIES 2019] ::,;x} el Ao e




Deep neural networks do not quantify their uncertainty

They are not calibrated probabilistic models

MNIST
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Transfer Testing
[Bradshaw et al. arXiv:1707.02476 2017]

0 100

200

Input log ,likelihood® (sum over outputs)
[Peharz, Vergari, Molina, Stelzner, Trapp, Kersting, Ghahramani UDL@UAI 2018]

MLP



Getting deep systems that know

when they don’t know.



Can we borrow ideas from
deep learning for probabilistic
graphical models?

B

Judea Pearl, UCLA
Turing Award 2012



This results in Sum-Product
Networks, a deep probabilistic

learning framework
B i

Darwiche
UCLA

Computational graph
(kind of TensorFlow
graphs) that encodes
how to compute
probabilities

Inference is linear in size of network

Kristian Kersting - Machines that know that they do not know n




And there Is a way to select models

Testing independence of random variables
using e.g. (nonparametric) tests

Randoin Variables

Conditoning,
e.g., via

clustering keep growing

alternatingly
*and + layers




[Poon, Domingos UAI'11; Molina, Natarajan, Kersting AAAI'17; Vergari, Peharz, Di Mauro, Molina, Kersting, Esposito AAAI '18;
Molina, Vergari, Di Mauro, Esposito, Natarajan, Kersting AAAI 18]

FLED SPFlow: An Easy and Extensible Library
®W for Sum-Product Networks [0/ Ve Stelzner Penar

; UNIVERSITAT
' DARMSTADT

UNIVERSITA m UNIVERSITY OF Kersting 2019]
DSBS RARE @Y WATERLOO . MADESI
5 UNIVERSITYOF N\ 7" VECTOR

Federal Minist
¥ CAMBRIDGE \  INSTITUTE kG ® ‘ of Educstion

and Research

2 1995 comemets Vv 2 Branches 0 rvleases AL @ cominb

Rranch master » New pull reguest Creste rew e Upiced fles Find *le m
https://github.com/SPFlow/SPFlow

rom spn.structure.leaves.parametric.Parametric import Categorical - 'f' L
- Domain Specific Language,
rom spn,.structure.Base import Sum, Product
rom spn.structure.base import assign_ids, rebuild_scopes_bottom_up Inference, EM, and MOdeI
Selecti |
p@ = Product(children=|Categorical(p=[0.3, 9.7], scope=1), Categoricall(p=(0.4, 0.6], scope=2)]) e ec .Ion. as We as .
:; :Lr‘:?t:ct(mj'lga:}.‘?oncal(, [?p;: sl?]), scope=1), Categorical(p=[0.6, @.4), scope=2)]) Compllatlon Of SPNS Into TF
2 = P children=| 1 [6.2, 0.8], scope=d@), ] -
5 o e teateor a2, ocen, e, e 0, en AN PYTOrch and also into flat,
p4 = Product(children=[p3, Categorical(p=[0.4, 9.6], pe=2)]) . .
library-free code even suitable
FRAeA1s Ao ot om. e for running on devices:

o C/C++,GPU, FPGA

SPFow, an open-source Python fbrary providing a simple interface to nference, learning and manipulation routines for
deep and tractable probabilistic models caled Sum-Product Networks (SPNs). The fbrary aliows one to quickly create SPNs
both from data and through a doman specfic language (DSL). it efficiently implemaents several probabilstic inderence

sn.tman llia casvna. titon sanssn'.snles sscndpsnale sed lavasscioatro snast sesanbhabla svalasnat s NINT A dlace wish sascealw



Random sum-product networks

[Peharz, Vergari, Molina, Stelzner, Trapp, Kersting, Ghahramani UDL@UAI 2018]

W i’!;\b WI W FINY Iy vy, F Vi T vy Ty N PV TI wyiv o
i I J | J{ ' ' | | | ‘
(X0 GHNGXS (XXX X ING) [ Xa Xl (X2 Xa) [Xed  (XoXs) (X7} {X0X:) (Xe)  IXL e X2 Xed (X1, (X Xe
RAT-SPN MLP  vMLP
MNIST  98.19 9832  98.09 10—3 MNIST \2) ’ H 7 E) (l
2, (85M)  (2.64M) (5.28M)
2 F-MNIST 89.52 90.81  89.81 > SVHN (9
3 (0.65M)  (9.28M) (1.07M) 8 104 ?
< 20.NG 478 4905 4881
037M)  (031M)  (0.16M) (O] SEMEION
3 107°
. MNIST 00852 00874 0.0974
g (17M) 0.82M)  (0.22M) o ﬁ. w‘
Z F-MNIST 03525 02965 0325 q,_-) 10-6
P (0.65M)  (0.82M)  (0.29M) y
g 20NG  1.6954 1.6180  1.6263
© (1.63M)  (0.22M)  (0.22M)

—200000 —150000 —100000 —50000 O
input log likelihood
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Learning the Structure of Autoregressive
Deep Models such as PixelCNNS ...cc.ooceta wes 2016

CSPNs
PixelCNNs

Learn Conditional SPN by testing conditional
independence and using conditional clustering, using e.g.
[Zhang et al. UAI 2011; Lee, Honovar UAI 2017; He et al. ICDM
2017; Zhang et al. AAAI 2018; Runge AISTATS 2018]

Conditional SPNs

[Shao, Molina, Vergari, Peharz, Kersting 2019]

CAML

DFG



Functional weights realized as
neural network
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Learn Conditional SPN by testing conditional
independence and using conditional clustering, using e.g.
[Zhang et al. UAI 2011; Lee, Honovar UAI 2017; He et al. ICDM
2017; Zhang et al. AAAI 2018; Runge AISTATS 2018]

Conditional SPNs

[Shao, Molina, Vergari, Peharz, Kersting 2019]

CAML

DFG



Continuous? Discrete?

LA data science et i

How to report results? IOO p Multinomial? Gaussian?
What is interesting? Poisson? ...

Kristian Kersting - Machines that know that they do not know n



[Molina, Natarajan, Vergari, Di Mauro, Esposito, Kersting AAAI 2018]

Distribution-agnostic
Deep Probabilistic Learning

No of unﬁnished Educations

Use nonparametric

Age ol v independency tests
ucots OIS and piece-wi§e Iipear
approximations
1Q
Satisfaction‘\’reatment a
satistactionMedication 0.004 ~— PWL g1 |

- PWL, A:SO “
GaUSSian |

—
—

————

— 0.002.

e —
T ——

Kristian Kersting - Machines that know that they do not know n



[Molina, Natarajan, Vergari, Di Mauro, Esposito, Kersting AAAI 2018]

Distribution-agnostic
Deep Probabilistic Learning

No of unﬁnished Educations

Use nonparametric

Age o sstddion Work | independency tests
oINS . and piece-wise linear
: approximations
1Q
Satisfacﬁoﬂ'Tteatment b | ——
satistactionMedication . | o0.004 | \PWL, =01 |

/ﬂ’// D 00 l.'.jl._ :::Vvt'j\\:; '1
However, we have to provide the
statistical types and do not gain insights
into the parametric forms of the variables.

Are they Gaussians? Gammas? ...



Federal Ministry
[Vergari, Molina, Peharz, Ghahramani, Kersting, Valera AAAI 2019] ey DFG MADESI % ‘ S

The Explorative Automatic Statistician

&5 TECHNISCHE
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=

missing
value

E A

We can even
automatically oo R
discovers the @O

statistical types and
parametric forms of
the variables

d =] HJ

Bayesian Type Discovery Mixed Sum-Product Network  Automatic Statistician




with few expert input ..

This report describes the dataset Titanic and contains
sanetdl S o) ! nation and an analyss on the
4 v SOgrC e ot he da’a
- T g pas of 1 100X
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...and can compi
mplile data reports automaticall
y




*[Baehrens, Schroeter, Harmeling, Kawanabe, Hansen, Muller JMLR 11:1803-1831, 2010]

The machine understands the data

with no expert input ...

- : l Exp‘anat-\on
0175 1 t vectO"* .

| | (computable Il
linear time in the
| | izre of the SPN)

0.1251 ‘ show"ng the

impact of
ngender” ON the

chances Of
<urvival for the

Titanic dataset

...and can compile data reports automatically
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Crossover of ML and DS with data &
programming abstractions

De Raedt, Kersting, Natarajan, Poole: Statistical Relational Artificial Intelligence: Logic, Probability, and
Computation. Morgan and Claypool Publishers, ISBN: 9781627058414, 2016.

=== building general-purpose
Al g data science and ML
machines
R make the ML/DS expert
_ more effective
increases the number of Databases/ S
KATHOLIEKE UNIVERSITEIT T I h — St m ca I
LEUVEN ... peopie who can Logic/
@ S B successfully build ML/DS i

Reasoning

& SR applications




Natarajan, Khot, Kersting, Shavlik. Boosted Statistical Relational Learners. Springer Brief 2015

Boosted Statistica

Understanding Electronic Health Records|
Atherosclerosis is the cause of the majority of
Acute Myocardial Infarctions (heart attacks)
Left—True

Logical Variables Right - False

(Abstraction) Rule/Database view

age_bw(a,35,45,7) g (_Smoke(a,No.5)

TECHNISCHE UID

UNIVERSITAT THE UNIVERSITY
DARMSTADT  OF TEXAS AT DALLAS

. .
C hol_bw(,.200400,7) I Plague in the left
coronary artery

C_Moladon) > [Circulation; 92(8), 2157-62, 1995;
JACC; 43, 842-7, 2004]
, _ig_bw(3,100,1000,5)

0.79

- 0.2 0.830 Algorithm | Accuracy | AUC-ROC [The higher,
PrObablhty J48 0.667 0.607 the better
* 0.8 0.97 0.8 SVM 0.667 0.5
AdaBoost | 0.667 0.608
Cage bw(a,30355) Bagging | 0.677 0.613
/\ NB 0.75 0.653
RPT 0.669*% 0.778 25%
0.25 RFGB 0.667* 0.819
Algorithm Likelihood AUC-ROC AUC-PR Time
for Mini,r\]g tMartov Logic The higher, the better The higher, the better The higher, the better The lower, the better State'Of'the'art
eltworks
Boosting 0.81 ]11% 0.96 ] 28% 0.93 ]50% 9s ] 37200x
LSM 0.73 0.54 0.62 93 hrs o faster

[Kersting, Driessens ICML 08; Karwath, Kersting, Landwehr ICDM 08; Natarajan, Joshi, Tadepelli, Kersting, Shavlik. IJCAI"11;

Natarajan, Kersting, Ip, Jacobs, Carr IAAl "13; Yang, Kersting, Terry, Carr, Natarajan AIME "15; Khot, Natarajan, Kersting, Shavlik
ICDM"13, MLJ"12, MLJ 15, Yang, Kersting, Natarajan BIBM 17]



Natarajan, Khot, Kersting, Shavlik. Boosted Statistical Relational Learners. Springer Brief 2015

up

THE UNIVERSITY
OF TEXAS AT DALLAS

https://starling.utdallas.edu/software/boostsrl/wiki/

StARLING! A

BOOSTSAL BASIKCS

Geting Stvedt

e Structure

B35C Parametes
Advanced Py wmeters
Sasc Modes
ASvanced Vodes

ADVANCED BOOSTSRL

Oefactt (RON-Boont)

MIN-Boost

Sogesson

One-Class Cuasefcation
Cont-Senative S5

VoG Wik Agvice

Asoronimace Counting
Ducretization of Contnvous-Valued
At e

LMnd Relatong! Rancom Walcs
Grounces Relatored Random Walkos

APPLICATIONS

Noou e Languade Processng

People Publications Software Datasets

Projects Bog Q

BoostSRL Wiki

BoostSRL (Boosting for Statistical Redational Learning) is a gradient-boosting based approach to
learning different types of SRL models. As with the standard gradient -boosting approach, our
approach tums the model leaming problem 10 learning a sequence of regression models. The key
difference 10 the standard approaches is that we learn relational regression models i.e., regression
models that operate on relational data. We assume the data in 3 predicate logic format and the
output are essentially first-order regression trees where the inner nodes contain conjunctions of
logical predicates. For more details on the models and the algorithm, we refer 10 our book on this

topic.

Sriraam Natarajan, Tushar Khot, Kristian Kersting and Jude Shaviik, Boosted Statistical Relational
Learners: From Benchmarks 10 Data-Driven Medicine . SpringerBriefs in Computer Science, ISBN:
978-3-319-13643-1, 2015

Human-in-the-loop learning



A simple example

What is the problem that the first card of a
randomly shuffled deck with 52 cards is

an Ace?

‘s '-

o™ sl M4
How would a machine solve this?
One option is to treat this as an inference problem
within in a graphical model, solved approximately

| using some mathematical program!
m - :




A simple example g

card
il (1,pAce)
. (52,pAce)




A simple example g




"y
£

\We do nof wént to Write down all
the rules!




Faster modelling |

Let’s use programming @osiractions
such as e.g.

w1:Vp,Xx,y: card(P,X),card(P,Y)=x=y
w2:Vc,Xx,y: card(X,C),card(Y,C)=>x=y

T T VRS

We do not want to write down all
the rules!




A simple example g




A simple example -

~No independencies. .
Fully connected. -

22704 gtates

card
(52,pAce)




A simple example g




Positions and cards are
exchangable but the machine is
not aware of these symmetries




. Faster modelling 3

Let’s use programming @osiractions
together with SYMmmEHH =.@rm©ﬂ language-

aware solvers
== - Faster solvers

& Vi
:“'f”
< - a

’ /
- —

> &
_
.; O S = : T

Positions and 6ards are
exchangable but the machine is
not aware of these symmetries




Let’s make it more “optimization”-like
Let’s say we want to classify
publications into scientific disciplines

»




Classification usmg LP SVMs ¢

:.‘f DARMSTADT
[Bennett “99; Mangasarian “99; Zhou, Zhang, Jiao "02, .

Replace |- by |4- |.-norm in the standard SVM prog.

Kristian Kersting - Machines that know that they do not know n



Relational Data and Program Abstractions

[Kersting, Mladenov, Tokmakov AlJ 15, Mladenov, Heinrich, Kleinhans, Gonsio, Kersting DeLBP " 16]

coslack sum{cite(I1,I2),label(I1),query(I2)} slack(I1l,I2)

1 var pred/1; #predicted label for unlabeled instances
E 2 var slack/1; #the slaclks
3 var coslack/2; #s = - -
) var weight/i:  #the Logically parameterized I:P variable
a s bjOs #the (set of ground LP variables)
6 var r/0; #mar
J . 2 %
O 8 slack sum{label (I)} slack(I);
Q 9
wid
(-
-

| Logically parameterized LP objectivejkm’m

TZ F I LITON e-off parameters

N

=C Mdadlglll. Ielc Cle U 5 cllcode oI
13 minimize: -r + C(1) * slack + C(2) * coslack;

(=]

Write down the LP-SVM in ,paper form®.

The machine compiles it into solver form. relO%ﬁp

http://www-ai.cs.uni-dortmund.de/weblab/static/RLP/html/
RELOOP: A Toolkit for Relational Convex Optimization

Embedded within Python s.t. loops and rules can be used
23 #examples should be on the correct side of the hyperplane
24 subject to forall {I in label(I)}:
25 label (I)*(innerProd(I) + b) + slack(I) >= r;

26 #weights are between -1 éﬂg_l____—_——ﬂ\

27 subject to for

28 subject to : r! Logically parameterized LP constraint ]

29 subject to for ooT TTaoTT o T T O TP U U TS




But wait, publications are citing
each other. OMG, | have to use
graph kernels!

3

o e

. S
REALLY?




Relational Data and Program Abstractions

[Kersting, Mladenov, Tokmakov AlJ 15, Mladenov, Heinrich, Kleinhans, Gonsio, Kersting DeLBP " 16]

1 var pred/1; #predicted label for unlabeled instances
2 var slack/1; #the slacks
3 var coslack/2; #slack between neighboring instances
= 4 var weight/1; #the slope of the hyperplane
= 5 var b/0; #the intercept of the hyperplane
O? 6 var r/O0; #margin
o s
;; 8 slack = sum{label(I)} slack(I);

2)} slack(I1,I2)
1)} slack(I1,I2)

Logical query defines scope of
abstract collective constraint

de trade-off parameters

minimize:. -r + CCZIl)

Citing papers share topics

15 subject to forall {I in quer pred(I) = 1nnerPro ) + b;
16 #related instances should have same labels.
17 subject to forall {I1, I2 in cite(I1l, I2), label(Il1l), query(I2)}:
18 label (I1) * pred(I2) + slack(I1l, I2) >= r;

19 #the symmetric case

20 subject to forall {I1, I2 in cite(Il, I2), label(I2), query(I1l)}:

21 label (I2) * pred(I1l) + slack(Il, I2) >= r;

Collective
constraints

No kernel, the structure is expressed within the constraints!

J I

25 label (I)*(innerProd(I) + b) + slack(I) >= r;

26 #weights are between -1 and 1

27 subject to forall {J in attribute(_, J)}: -1 <= weight(J) <= 1;

28 subject to : r >= 0; #the margin is positive

29 subject to forall {I in label(I)}: slack(I) >= O0; #slacks are positive




OK, we have now a high-level, declarative
language for mathematical programming.

HOW CAN THE MACHINE‘ﬁjNOW HELP
TO REDUCE THE SOLVER COSTS?

Kristian Kersting - Machines that know that they do not know



Lifted Mathematical Programming

Exploiting computational symmetries

[Mladenov, Ahmadi, Kersting AISTATS “12, Grohe, Kersting, Mladenov, Selman ESA " 14,
Kersting, Mladenov, Tokmatov AlJ “17]

If exchanging two variables
preserves optimality, group
them together

automatically

compressed

Run Solver

Run Solver

Kristian Kersting - Machines that know that they do not know n



Lifted Mathematical Programming

Exploiting computational symmetries

[Mladenov, Ahmadi, Kersting AISTATS “12, Grohe, Kersting, Mladenov, Selman ESA " 14, Kersting,
Mladenov, Tokmatov AlJ “17]

maxy, . ;;regs 0z +0y+ 12 T Yy 2

[]
E { =)
b

View the mathematical program as a colored graph

s.1.

A

Reduce the MP by running Weisfeiler-Lehman
on the MP-Graph

Kristian Kersting - Machines that know that they do not know




Weisfeiler-Lehman (WL) aka & o

\""7,{: ; g
99’ DARMSTADT

“naive vertex classification” ¢ o® ®

Basic subroutine for Gl testing

@
Computes LP-relaxations of GA-ILP,
: : ¢y
fractional automorphisms @
@

Quasi-linear running time O((n+m)log(n)) when | @
using asynchronous updates

Part of graph tool SAUCY

Has lead to highly performant graph kernels
Can be extended to weighted graphs/real-valued matrices

Actually a Frank-Wolfe optimizer and can be viewed as
recursive spectral clustering

Kristian Kersting - Machines that know that they do not know n
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Compression: Coloring the graph

[Kersting, Ahmadi, Natarajan UAI'09; Ahmadi, Kersting, Mladenov, Natarajan MLJ’13, Mladenov, Ahmadi, Kersting AISTATS " 12,
Grohe, Kersting, Mladenov, Selman ESA " 14, Kersting, Mladenov, Tokmatov AlJ “17]

Color nodes initially with the same color,
say red

Color factors distinctively according to
their equivalences. For instance, assuming
f; and f, to be identical and B appears at the
second position within both, say blue

Kristian Kersting - Machines that know that they do not know n
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Compression: Pass colors around

[Kersting, Ahmadi, Natarajan UAI'09; Ahmadi, Kersting, Mladenov, Natarajan MLJ’13, Mladenov, Ahmadi, Kersting AISTATS " 12,
Grohe, Kersting, Mladenov, Selman ESA " 14, Kersting, Mladenov, Tokmatov AlJ “17]

1. Each factor collects the colors of its neighboring nodes

Kristian Kersting - Machines that know that they do not know n
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Compression: Pass colors around

[Kersting, Ahmadi, Natarajan UAI'09; Ahmadi, Kersting, Mladenov, Natarajan MLJ’13, Mladenov, Ahmadi, Kersting AISTATS " 12,
Grohe, Kersting, Mladenov, Selman ESA " 14, Kersting, Mladenov, Tokmatov AlJ “17]

1. Each factor collects the colors of its neighboring nodes
2. Each factor ,signs” its color signature with its own color

Kristian Kersting - Machines that know that they do not know n
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A s

Compression: Pass colors around

[Kersting, Ahmadi, Natarajan UAI'09; Ahmadi, Kersting, Mladenov, Natarajan MLJ'13, Mladenov, Ahmadi, Kersting AISTATS "12,
Grohe, Kersting, Mladenov, Selman ESA " 14, Kersting, Mladenov, Tokmatov AlJ “17]

1. Each factor collects the colors of its neighboring nodes
2. Each factor ,signs” its color signature with its own color
3. Each node collects the signatures of its neighboring factors
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Compression: Pass colors around

[Kersting, Ahmadi, Natarajan UAI'09; Ahmadi, Kersting, Mladenov, Natarajan MLJ'13, Mladenov, Ahmadi, Kersting AISTATS "12,
Grohe, Kersting, Mladenov, Selman ESA " 14, Kersting, Mladenov, Tokmatov AlJ “17]

Each factor collects the colors of its neighboring nodes
Each factor ,signs” its color signature with its own color
Each node collects the signatures of its neighboring factors
Nodes are recolored according to the collected signatures
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Each factor collects the colors of its neighboring nodes
Each factor ,signs” its color signature with its own color
Each node collects the signatures of its neighboring factors
Nodes are recolored according to the collected signatures
If no new color is created stop, otherwise go back to 1



Lifted Mathematical Programming

Exploiting computational symmetries

[Mladenov, Ahmadi, Kersting AISTATS “12, Grohe, Kersting, Mladenov, Selman ESA " 14,
Kersting, Mladenov, Tokmatov AlJ “17]
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Weisfeiler-Lehman in
quasi-linear time

automatically
compressed

Run Solver Run Solver
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Grohe, Kersting, Mladenov, Selman ESA " 14, Kersting, Mladenov, Tokmatov AlJ “17
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The more observed the more lifting
Faster end-to-end even in the light of Gurobi‘s fast pre-solving heuristics
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[Boyd, Diaconis, Parrilo, Xiao: Internet Mathematics 2(1):31-71°095]

As also noted by Stephen Boyd

Dense vs. sparse is not enough,
solvers need to be aware of
symmetries
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Projections of the feasible
region onto the span of
the fractional auto-
morphism

TTLTSD
Feasible region
of LP and the

objective vectors

Span of the fractional
auto-morpishm of the LP




x* = arg mingep J(x)

Holds also for Convex QPs i) - G

Mladenov, Kleinhans, Kersting AAAI “17
= {x : Ax < b}

#QUADRATIC OBJECTIVE

minimize: sun{) in feature(I,J)} weight(J)ee2 + c1 + sla 0.94. CORAentity resolution
0.92| I-I TC-QP-svM Iy |
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Mladenov, Kleinhans, Kersting AAAI “17

Approximately Lifted SVM:
Cluster data points via K-
means using sorted distance
vectors. Solve SVM on
cluster representatives only
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Symmetry- based

Data Programming:
fractional autom. of label-
preserving data trans-
formatlons

Original SVM

x =
¥
the higher,
the better

PAC-style generalization bound: ¥ Original SVM ] s
the approximately lifted SVM will | 5 == ;i @
very likely have a small expected S the lower, the o
error rate if it has a small empirical e { §

loss over the original dataset.

100 I I
» ¥ f X l 1
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# of [plartitions (red, blue l l es green)

Similar predictive performance but 47x faster (d) Les
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[Mladenov, Belle, Kersting AAAI “17]

And, there are other “-02”, “-03”, ... flags,
e.g symbolic-numerical interior point solvers
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Formulae parse  Algebraic Matrix Free
trees Decision Diagrams Optimization
[ C g
<unning Time vs. nz(A) W All this opens the general
A 0E4S . Il Mmachine learning toolbox for
30645 / B declarative machines:
2.0E45 ,/ ‘ B feature selection, least-squares
1,0E+5 OV bt = regression, label propagation, ranking,
0.06+0 & =T e 1.0E+8 M collaborative filtering, community
LRSIV dctection, deep leaming, ...

\ : €d and polished and possibly drilled before painting, each of which actions require a
- F-of tools which are possibly available. Various painting and connection methods are represented, each having an

effect on the quality of the job, and each requiring tools. Rewards (required quality) range from 0 to 10 and a discounting
factor of 0. 9 was used used



There are strong invests into
probabilistic programming

Jl

v,
3.¢ UBER Al Labs

RelationalAl, Apple,
Microsoft and Uber are
investing hundreds of
millions of US dollars

Mﬁ osoft’




Since we need languages for Systems Al,

the computational and mathematical modeling of complex Al systems.

[Laue et al. NeurlPS 2018; Kordjamshidi, Roth, Kersting:
“Systems Al: A Declarative Learning Based Programming
Perspective.” IICAI-ECAI 2018]

Eric Schmidt, Executive Chairman, Alphabet Inc.: Just Say "Yes”, Stanford Graduate School of Business,
May 2, 2017 .https://www.youtube.com/watch?v=vbb-AjiXyhO.



Overall, AI/ML/DS indeed refine
“formal” science, but ...

= Al is more than deep neural networks. Probabilistic and
causal models are whiteboxes that provide insights into
applications

= Al is more than a single table. Loops, graphs, different data
types, relational DBs, ... are central to data science and high-
level programming languages for DS help to capture this
complexity

= Al is more than just Machine Learners and Statisticians

Learning-based programming offers a
framework for building systems that help

to go beyond, democratize, and even
automize traditional AI/ML/DS






Not every Data Science machine is
generative

in P(w,b,§) = -w’
W ) =g

subject to {

Not everyone likes to
turn math into code

Support Vector Machines
Cortes, Vapnik MLJ 20(3):273-297, 1995




Kersting, Mladenov, Tokmakov AlJ “17, Mladenov, Heinrich, Kleinhans, Gonsio, Kersting DeLBP 16

High-level Languages for
Mathematical Programs

Write down SVM in ,,paper form.“ The machine compiles it into solver form.

TECHNISCHE
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#QUADRATIC OBJECTIVE
minimize: suzm{J) in feature(I,J))} weight(J)e*2 + c1 * slack + ¢c2 * coslack;

#labeled examples should be on the correct side

subject to forall {I in labeled(I)}: labeled(I)spredict(I) >= 1 - slack(l);

#slacks are positive

subject to forall {I in labeled(I)}: slack(I) >= 0;

Embedded within
Python s.t. loops and re O@P

rules can be used

RELOOP: A Toolkit for Relational Convex Optimization

Y
/ » ~
L Maximum.
h / margin
> N\
Y

Support Vector Machines O
Cortes, Vapnik MLJ 20(3):273-297, 1995

Kristian Kersting - Machines that know that they do not know




In general, computing the exact posterior is intractable,
I.e., inverting the generative process to determine the
state of latent variables corresponding to an input is

time-consuming and error-prone.
Deep Probabilistic Programming

import pyro.distributions as dist
def guide(data):
def model(data): § ‘;(,,‘,),“: ewo varial o1 4 eters with Pyr
¥ defi e ‘ . ! weiLer alpha_q = pyro.param("alpha_q", torch.tensor(15.0),
alphad = ~orch,~cnsor§:b;3) constraint=constraints.positive)
betad = :orgh.tefsor(.w 8) beta_gq = pyro.param("beta_gq", torch.tensor(15.8)
le f the ta ¢ ) constraint=constraints.positive)
f = pyro.sample("latent_fairness”, dist.Beta(alpha®, beta8)) ¥ sample latent f ness from t distributi Beta(alpha_q
# loog er t bsery jata pyro.sample(“latent_fairness", dist.Beta(alpha_q. beta_q))
for 1 in range(len(data))

pyro.samplc(”cbs_(}1:format(1). dist.Bernoulli(f), obs=data[i])

(2) Ease the implementation by some high-
level, probabilistic programming language

C e ) C e )
latent
6
—

Deep Neural Network

¢

observed

——/

(1) Instead of optimizating variational parameters for
every new data point, use a deep network to predict the

posterior given X [Kingma, Welling 2013, Rezende et al. 2014]
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3 ¢ UBER Al Labs

[Stelzner, Molina, Peharz, Vergari, Trapp, Valera, Ghahramani, Kersting ProgProb 2018]

Sum-Product Probabilistic Programming

import pyro.distributions as

def model(data)

def guide(data)

alpha_q = pyro.param("alpha_q", torch.tensor(15.0)
P 8 t h.t ‘f; j) constraint=constraints.posit )
betad = torch.tensor( 9.9) beta_gq = pyro.param(“beta_q", torch.tensor(15.0),
y , constraint=constraints.positive)
f pyro.sample("latent fairness”, dist,Beta(alpha®, betaf))
pyro.sample(“latent_fairness", dist.Beta(alpha_q, beta_q))
f ( (data))
pyro.sample("obs_{}".format(i), dist.Bernoulli(f), obs=data[i]) Sum PrOdUCt Network

FL o
(2) Ease the implementation by some high- @w « =

level, probabilistic programming language

”-------§\ C?{j V}ék 3??‘ Sé;
Deep Neural Network

6 |
observed @ g%
— — R 2

(1) Instead of optimizating variational parameters for
every new data point, use a deep network to predict the
posterior given X [Kingma, Welling 2013, Rezende et al. 2014]

latent

¢




Unsupervised scene understanding

. . ""'L"?‘ ’.
Consider e.g. unsupervised [F<aSas N <

scene understanding using .', T ‘ e
a generative model TSl

[Attend-Infer-Repeat (AIR) model, Hinton et al. NIPS 2016]

Sum-Product Probabilistic Programming:

Making machine learning and data science

easier [Stelzner, Molina, Peharz, Vergari, Trapp,
Valera, Ghahramani, Kersting ProgProb 2018]
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Probabilistic Programming: Deep Probabilistic Prog.:
Easier modelling by programming Modelling and inference
generative models in a high-level, might be hard, so use a
prob. language deep neural network for it

def prior_step(t):

t Recurrent Neural Network (RNN)
z_where = pyro.sample('z_where_{}'.format(t), - -

dist.normal,
z_where_prior_mu, z_where_prior_sigma)

z_what = pyro.sample('z_what_{}'.format(t),
dist.normal,
z_what_prior_mu, z_what_prior_sigma)

9,9
NN

y_att = decode(z_what) #1 t X t s P
Sum-Product (*)
eye g Network O
Use deep probabilistic models that
feature tractable, deterministic inference ® ® & ®

" spn.structure.base rt assign_ids, rebuild_scopes_bottos_up

peé Product( [Categorical(p=[0.3, 0.7], 1), Categorical(p=[0.4, 0.6], 2)1)
pl1 = Product( [Categorical(p=[0.5, @.5], pe=1), Categorical(p=[0.6, 0.4], 2)1)
s1 = Sum(s (e.3, @.7], ren=[pd, p1l)

p2 Product(chi [Categorical(p=[0.2, 0.8], Q), s1l)

p3 Product(¢ [Categorical(p=[0.2, 0.8], @), Categorical(p=[0.3, 0.7], 1))
p4 = Product( [p3, Categorical(p=(0.4, 0.6), 2)1)

spn = Sum(w (e.4, 0.6], ir p2, p4l)

assign_ids(spn)
rebuild_scopes_bottom_up(spn)

HW

spn



Actually, the main idea is to replace the

VAEs within AIR by SPNs
VAE SPN
"/—:\\ ./.:_\.
I \I/’
l/— r‘\' '/1‘—\'
\_/ \_/
@ infinite mixture model @ “large” but finite mixture model
@ intractable density @ tractable density
@ intractable posterior @ tractable marginals penarz et a. 2015
@ tractable posterior (vergari et al. 2017)




Sum-Product Attent-Infer Repeat
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[Stelzner, Peharz, Kersting 2019]




Sum-Product Attent-Infer Repeat

Multi-MNIST Sprites
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[Stelzner, Peharz, Kersting 2019]

B UNIVERSITY OF

Noisy MNIST

&% TECHNISCHE
{07/~ UNIVERSITAT

”q))fg DARMSTADT



Sum-Product Attent-Infer Repeat
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SPAIR
result

SPAIR
recon-
struction
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result

AIR
recon-
struction

[Stelzner, Peharz, Kersting 2019]



